https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interpretable ML model for quality control of locks using counterfactual explanations
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. ASSA ABLOY.
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0003-1597-6738
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0002-9933-8532
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. RISE RESEARCH INSTITUTES OF SWEDEN, Sweden.ORCID iD: 0000-0002-9890-4918
2024 (English)Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents an interpretable machinelearning model for anomaly detection in door locks using torque data. The model aims to replace the human tactile sense in the quality control process, reducing repetitive tasks and improving reliability. The model achieved an accuracy of 96%, however, to gain social acceptance and operators' trust, interpretability of the model is crucial. The purpose of this study was to evaluate anapproach that can improve interpretability of anomalousclassifications obtained from an anomaly detection model. Weevaluate four instance-based counterfactual explanators, three of which, employ optimization techniques and one uses, a less complex, weighted nearest neighbor approach, which serve as ourbaseline. The former approaches, leverage a latent representation of the data, using a weighted principal component analysis, improving plausibility of the counter factual explanations andreduces computational cost. The explanations are presentedtogether with the 5-50-95th percentile range of the training data, acting as a frame of reference to improve interpretability. All approaches successfully presented valid and plausible counterfactual explanations. However, instance-based approachesemploying optimization techniques yielded explanations withgreater similarity to the observations and was therefore concluded to be preferable despite the higher execution times (4-16s) compared to the baseline approach (0.1s). The findings of this study hold significant value for the lock industry and can potentially be extended to other industrial settings using timeseries data, serving as a valuable point of departure for further research.

Place, publisher, year, edition, pages
2024. article id 7
Keywords [en]
—Explainable artificial intelligence, Counterfactual explanation, Anomaly detection, Principal component analysis
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:mdh:diva-66504OAI: oai:DiVA.org:mdh-66504DiVA, id: diva2:1854197
Conference
2024 8th International Conference on Artificial Intelli-gence, Automation and Control Technologies (AIACT 2024)
Funder
Knowledge Foundation, No 20200132 01 H
Note

In press

Available from: 2024-04-24 Created: 2024-04-24 Last updated: 2024-04-26Bibliographically approved
In thesis
1. Automated Tactile Sensing for Quality Control of Locks Using Machine Learning
Open this publication in new window or tab >>Automated Tactile Sensing for Quality Control of Locks Using Machine Learning
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis delves into the use of Artificial Intelligence (AI) for quality control in manufacturing systems, with a particular focus on anomaly detection through the analysis of torque measurements in rotating mechanical systems. The research specifically examines the effectiveness of torque measurements in quality control of locks, challenging the traditional method that relies on human tactile sense for detecting mechanical anomalies. This conventional approach, while widely used, has been found to yield inconsistent results and poses physical strain on operators. A key aspect of this study involves conducting experiments on locks using torque measurements to identify mechanical anomalies. This method represents a shift from the subjective and physically demanding practice of manually testing each lock. The research aims to demonstrate that an automated, AI-driven approach can offer more consistent and reliable results, thereby improving overall product quality. The development of a machine learning model for this purpose starts with the collection of training data, a process that can be costly and disruptive to normal workflow. Therefore, this thesis also investigates strategies for predicting and minimizing the sample size used for training. Additionally, it addresses the critical need of trustworthiness in AI systems used for final quality control. The research explores how to utilize machine learning models that are not only effective in detecting anomalies but also offers a level of interpretability, avoiding the pitfalls of black box AI models. Overall, this thesis contributes to advancing automated quality control by exploring the state-of-the-art machine learning algorithms for mechanical fault detection, focusing on sample size prediction and minimization and also model interpretability. To the best of the author’s knowledge, it is the first study that evaluates an AI-driven solution for quality control of mechanical locks, marking an innovation in the field.

Abstract [sv]

Denna avhandling fördjupar sig i användningen av Artificiell Intelligens (AI) för kvalitetskontroll i tillverkningssystem, med särskilt fokus på anomalidetektion genom analys av momentmätningar i roterande mekaniska system. Forskningen undersöker specifikt effektiviteten av momentmätningar för kvalitetskontroll av lås, vilket utmanar den traditionella metoden som förlitar sig på människans taktila sinne för att upptäcka mekaniska anomalier. Denna konventionella metod, som är brett använd, har visat sig ge inkonsekventa resultat och medför fysisk belastning för operatörerna. En nyckelaspekt av denna studie innebär att genomföra experiment på lås med hjälp av momentmätningar för att identifiera mekaniska anomalier. Denna metod representerar en övergång från den subjektiva och fysiskt krävande praxisen att manuellt testa varje lås. Forskningen syftar till att demonstrera att en automatiserad, AI-driven metod kan erbjuda mer konsekventa och tillförlitliga resultat, och därmed förbättra den övergripande produktkvaliteten. Utvecklingen av en maskininlärningsmodell för detta ändamål börjar med insamling av träningsdata, en process som kan vara kostsam och störande för det normala arbetsflödet. Därför undersöker denna avhandling också strategier för att förutsäga och minimera mängden av data som används för träning. Dessutom adresseras det kritiska behovet av tillförlitlighet i AI-system som används för slutlig kvalitetskontroll. Forskningen utforskar hur man kan använda maskininlärningsmodeller som inte bara är effektiva för att upptäcka anomalier, utan också erbjuder en nivå av tolkningsbarhet, för att undvika fallgroparna med svart låda AI-modeller. Sammantaget bidrar denna avhandling till att främja automatiserad kvalitetskontroll genom att utforska de senaste maskininlärningsalgoritmerna för detektion av mekaniska fel, med fokus på prediktion och minimering av mängden träningsdata samt tolkbarheten av modellens beslut. Denna avhandling utgör det första försöket att utvärdera en AI-driven strategi för kvalitetskontroll av mekaniska lås, vilket utgör en nyskapande innovation inom området.

Place, publisher, year, edition, pages
Västerås: Mälardalens universitet, 2024. p. 49
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 360
Keywords
Anomaly detection, Sample size prediction, Learning curves, Machine learning, Quality control, : Explainable artificial intelligence, Counterfactual explanation
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-66506 (URN)978-91-7485-648-4 (ISBN)
Presentation
2024-06-07, C3-003, Mälardalens universitet, Eskilstuna, 09:15 (English)
Opponent
Supervisors
Funder
Knowledge Foundation, No 20200132 01 H
Available from: 2024-04-25 Created: 2024-04-24 Last updated: 2024-05-17Bibliographically approved

Open Access in DiVA

fulltext(512 kB)50 downloads
File information
File name FULLTEXT01.pdfFile size 512 kBChecksum SHA-512
6f7cf05b92e7b0233fdf96b6dcde85218881a70547ad8625533c669ef82c73c01608c9d6110f91cbfc8c2eb58c361d9fdf81e322c2c7378e403321990d87e4e1
Type fulltextMimetype application/pdf

Authority records

Andersson, TimBohlin, MarkusAhlskog, MatsOlsson, Tomas

Search in DiVA

By author/editor
Andersson, TimBohlin, MarkusAhlskog, MatsOlsson, Tomas
By organisation
Embedded SystemsInnovation and Product Realisation
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 50 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 302 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf