Open this publication in new window or tab >>Show others...
2023 (English)In: Proc. - IEEE Int. Symp. Real-Time Distrib. Comput., ISORC, Institute of Electrical and Electronics Engineers Inc. , 2023, p. 126-135Conference paper, Published paper (Refereed)
Abstract [en]
In this paper, we present an end-to-end timing model to capture timing information from software architectures of distributed embedded systems that use network communication based on the Time-Sensitive Networking (TSN) standards. Such a model is required as an input to perform end-to-end timing analysis of these systems. Furthermore, we present a methodology that aims at automated extraction of instances of the end-to-end timing model from component-based software architectures of the systems and the TSN network configurations. As a proof of concept, we implement the proposed end-to-end timing model and the extraction methodology in the Rubus Component Model (RCM) and its tool chain Rubus-ICE that are used in the vehicle industry. We demonstrate the usability of the proposed model and methodology by modeling a vehicular industrial use case and performing its timing analysis.
Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc., 2023
Keywords
Embedded systems, Network architecture, Software architecture, Timing circuits, Automated extraction, Component based, Component-based software architecture, Distributed embedded system, End to end, Modelling and analysis, Network communications, Timing Analysis, Timing information, Timing modeling, Extraction
National Category
Computer Systems
Identifiers
urn:nbn:se:mdh:diva-64173 (URN)10.1109/ISORC58943.2023.00025 (DOI)001044268900013 ()2-s2.0-85168757094 (Scopus ID)9798350339024 (ISBN)
Conference
Proceedings - 2023 IEEE 26th International Symposium on Real-Time Distributed Computing, ISORC 2023
2023-09-062023-09-062024-02-07Bibliographically approved