https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A COMPARATIVE ANALYSIS OF NLP ALGORITHMS FOR IMPLEMENTING AI CONVERSATIONAL ASSISTANTS: Comparative Analysis of NLP Algorithms for NLI
Mälardalens universitet, Akademin för innovation, design och teknik.
2023 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

The rapid adoption of low-code/no-code software systems has reshaped the landscape of software development, but it also brings challenges in usability and accessibility, particularly for those unfamiliar with the specific components and templates of these platforms. This thesis targets improving the developer experience in Nokia Corporation's low-code/no-code software system for network management through the incorporation of Natural Language Interfaces (NLIs) using Natural Language Processing (NLP) algorithms. 

Focused on key NLP tasks like entity extraction and intent classification, we analyzed a variety of algorithms, including MaxEnt Classifier with NLTK, Spacy, Conditional Random Fields with Stanford NER for entity recognition, and SVM Classifier, Logistic Regression, Naïve Bayes, Decision Tree, Random Forest, and RASA DIET for intent classification. Each algorithm's performance was rigorously evaluated using a dataset generated from network-related utterances. The evaluation metrics included not only performance metrics but also system metrics.

Our research uncovers significant trade-offs in algorithmic selection, elucidating the balance between computational cost and predictive accuracy. It reveals that while some models, like RASA DIET, excel in accuracy, they require extensive computational resources, making them less suitable for lightweight systems. In contrast, simpler models like Spacy and StanfordNER provide a balanced performance but require careful consideration for specific entity types. 

While the study is limited by dataset size and focuses on simpler algorithms, it offers an empirically grounded framework for practitioners and decision-makers at Nokia and similar corporations. The findings point towards future research directions, including the exploration of ensemble methods, the fine-tuning of existing models, and the real-world implementation and scalability of these algorithms in low-code/no-code platforms.

Ort, förlag, år, upplaga, sidor
2023. , s. 51
Nyckelord [en]
Software Engineering
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:mdh:diva-64493OAI: oai:DiVA.org:mdh-64493DiVA, id: diva2:1803935
Externt samarbete
Nokia Corporation, Espoo, Finland
Ämne / kurs
Datavetenskap
Presentation
2023-09-14, R2-132, Universitetsplan 1 (MDU campus Västerås), Västerås, Sweden, Västerås, 12:30 (Engelska)
Handledare
Examinatorer
Anmärkning

Thesis for the Degree of Master of Science in Computer Science with Specialization in Software Engineering

Course Code: DVA501

Tillgänglig från: 2023-10-24 Skapad: 2023-10-10 Senast uppdaterad: 2023-10-24Bibliografiskt granskad

Open Access i DiVA

fulltext(1891 kB)991 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1891 kBChecksumma SHA-512
a910eb1350c9200934e5b76fed0d09eb396df3e583af092964bb643d33499d0de1fa75424409db17c611a0eee64805e0b285a2a394fb162b8a0207290b73e7a6
Typ fulltextMimetyp application/pdf

Av organisationen
Akademin för innovation, design och teknik
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 991 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 571 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf