https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
EVALUATING PERFORMANCE OF GENERATIVE MODELS FOR TIME SERIES SYNTHESIS
Mälardalens universitet, Akademin för innovation, design och teknik.
2023 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Motivated by successes in the image generation domain, this thesis presents a novel Hybrid VQ-VAE (H-VQ-VAE) approach for generating realistic synthetic time series data with categorical features. The primary motivation behind this work is to address the limitations of existing generative models in accurately capturing the underlying structure and patterns of time series data, especially when dealing with categorical features. 

Our proposed H-VQ-VAE model builds upon the foundation of the VQ-VAE architecture and consists of two separate VQ-VAEs: the whole VQ-VAE and the sliding VQ-VAE. Both models share a ResNet-based architecture with conv1d layers to effectively capture the temporal structure within the time series data. The whole VQ-VAE focuses on entire sequences of data to learn relationships between categorical and numerical features, while the sliding VQ-VAE exclusively processes numerical features using a sliding window approach.

We conducted experiments on multiple datasets to evaluate the performance of our H-VQ-VAE model in comparison with the original VQ-VAE and TimeGAN models. Our evaluation used a train-on-real and test-on-synthetic approach, focusing on metrics such as Mean Absolute Error (MAE) and Explained Variance (EV). The H-VQ-VAE model achieved a 25-50% better MAE for numerical features compared to the VQ-VAE and outperformed TimeGAN by 45-75% on the complex dataset indicating its effectiveness in capturing the underlying structure and patterns of the time series data.

In conclusion, the H-VQ-VAE model offers a promising approach for generating realistic synthetic time series data with categorical features, with potential applications in various fields where accurate data generation is crucial.

Ort, förlag, år, upplaga, sidor
2023.
Nyckelord [en]
GAN, Generative Adversarial Network, VQ-VAE, Vector Quantized Variational AutoEncoder, AutoEncoder, VAE, Time Series, Synthesizing, Data Synthesis
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:mdh:diva-63336OAI: oai:DiVA.org:mdh-63336DiVA, id: diva2:1769297
Externt samarbete
Nokia
Ämne / kurs
Datavetenskap
Presentation
2023-06-01, 11:31
Handledare
Examinatorer
Tillgänglig från: 2023-06-21 Skapad: 2023-06-16 Senast uppdaterad: 2023-06-21Bibliografiskt granskad

Open Access i DiVA

fulltext(3056 kB)302 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3056 kBChecksumma SHA-512
2fdaf2becb8dfa2f973315102d014362aaf722482702c2a67f1134246fc0949a103010c7b7402e543650df830d29d0382867e55d363f557b1bbd79036a46ee90
Typ fulltextMimetyp application/pdf

Av organisationen
Akademin för innovation, design och teknik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 302 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 370 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf