https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CREATION OF AN OPERATIONAL DESIGN DOCUMENT FOR THE AUTONOMOUS SHIPPING INDUSTRY
Mälardalens universitet, Akademin för innovation, design och teknik.
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

The advancement of Artificial Intelligence technologies has paved the way for the increasing use of autonomous systems in various fields, including air, land, and sea. Maritime is an important domain for applying autonomous systems, as collisions at sea can result in significant losses. How- ever, the development of autonomous systems in the maritime domain involves the collection of vast amounts of data from sensors on vehicles, which poses significant challenges in understanding the types of data collected from vehicle sensors and the corresponding data system requirements due to the large amount of data collected. To address this issue, this thesis proposes the use of Oper- ational Design Domain (ODD), inspired by the autonomous car domain, to structure and manage the data. An ODD taxonomy was designed with the help of BSI PAS 1883 and ASAM OpenODD concepts. This thesis presents an initial draft of the ODD taxonomy for the maritime domain, followed by the implementation of ODD samples on actual data. The work involved converting unstructured data into ODD-friendly data. The results of this thesis include an ODD taxonomy, a framework, and a use case demonstrating the application of these concepts to actual data. These results provide an example of how to manage large amounts of data in the autonomous maritime environment and facilitate further testing of autonomous systems in this domain. 

sted, utgiver, år, opplag, sider
2023. , s. 36
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-64462OAI: oai:DiVA.org:mdh-64462DiVA, id: diva2:1802826
Eksternt samarbeid
Groke Technologies Finland
Veileder
Examiner
Tilgjengelig fra: 2023-10-09 Laget: 2023-10-05 Sist oppdatert: 2023-10-09bibliografisk kontrollert

Open Access i DiVA

fulltext(6369 kB)19 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 6369 kBChecksum SHA-512
ab190ea00953f7cdf4b35540bf7f6974c8acd31ba5447f6cf0eb321a0248e53863a80f3e87c060621b0a1605bb3293669fb224b0f382b543081c274f4d94b29d
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 19 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 285 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf