https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
EVALUATING PERFORMANCE OF GENERATIVE MODELS FOR TIME SERIES SYNTHESIS
Mälardalens universitet, Akademin för innovation, design och teknik.
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Motivated by successes in the image generation domain, this thesis presents a novel Hybrid VQ-VAE (H-VQ-VAE) approach for generating realistic synthetic time series data with categorical features. The primary motivation behind this work is to address the limitations of existing generative models in accurately capturing the underlying structure and patterns of time series data, especially when dealing with categorical features. 

Our proposed H-VQ-VAE model builds upon the foundation of the VQ-VAE architecture and consists of two separate VQ-VAEs: the whole VQ-VAE and the sliding VQ-VAE. Both models share a ResNet-based architecture with conv1d layers to effectively capture the temporal structure within the time series data. The whole VQ-VAE focuses on entire sequences of data to learn relationships between categorical and numerical features, while the sliding VQ-VAE exclusively processes numerical features using a sliding window approach.

We conducted experiments on multiple datasets to evaluate the performance of our H-VQ-VAE model in comparison with the original VQ-VAE and TimeGAN models. Our evaluation used a train-on-real and test-on-synthetic approach, focusing on metrics such as Mean Absolute Error (MAE) and Explained Variance (EV). The H-VQ-VAE model achieved a 25-50% better MAE for numerical features compared to the VQ-VAE and outperformed TimeGAN by 45-75% on the complex dataset indicating its effectiveness in capturing the underlying structure and patterns of the time series data.

In conclusion, the H-VQ-VAE model offers a promising approach for generating realistic synthetic time series data with categorical features, with potential applications in various fields where accurate data generation is crucial.

sted, utgiver, år, opplag, sider
2023.
Emneord [en]
GAN, Generative Adversarial Network, VQ-VAE, Vector Quantized Variational AutoEncoder, AutoEncoder, VAE, Time Series, Synthesizing, Data Synthesis
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-63336OAI: oai:DiVA.org:mdh-63336DiVA, id: diva2:1769297
Eksternt samarbeid
Nokia
Fag / kurs
Computer Science
Presentation
2023-06-01, 11:31
Veileder
Examiner
Tilgjengelig fra: 2023-06-21 Laget: 2023-06-16 Sist oppdatert: 2023-06-21bibliografisk kontrollert

Open Access i DiVA

fulltext(3056 kB)302 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3056 kBChecksum SHA-512
2fdaf2becb8dfa2f973315102d014362aaf722482702c2a67f1134246fc0949a103010c7b7402e543650df830d29d0382867e55d363f557b1bbd79036a46ee90
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 302 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 370 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf