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Abstract

Implementing object detection methods for runway detection during landing approaches is lim-
ited in the safety-critical aircraft domain. This limitation is due to the difficulty that comes with
verification of the design and the ability to understand how the object detection behaves during
operation. During operation, object detection needs to consider the aircraft’s position, environ-
mental factors, different runways and aircraft attitudes. Training such an object detection model
requires a comprehensive dataset that defines the features mentioned above. The feature’s impact
on the detection capabilities needs to be analysed to ensure the correct distribution of images in
the dataset. Gathering images for these scenarios would be costly and needed due to the aviation
industry’s safety standards. Synthetic data can be used to limit the cost and time required to create
a dataset where all features occur. By using synthesised data in the form of generating datasets in
a simulated environment, these features could be applied to the dataset directly. The features could
also be implemented separately in different datasets and compared to each other to analyse their
impact on the object detections capabilities. By utilising this method for the features mentioned
above, the following results could be determined. For object detection to consider most landing
cases and different runways, the dataset needs to replicate real flight data and generate additional
extreme landing cases. The dataset also needs to consider landings at different altitudes, which
can differ at a different airport. Environmental conditions such as clouds and time of day reduce
detection capabilities far from the runway, while attitude and runway appearance reduce it at close
range. Runway appearance did also affect the runway at long ranges but only for darker runways.
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1. Introduction

In the aviation domain, machine learning has generated impressive results in the �eld of vision.
With advances in computational capabilities and access to large amounts of data, machine learning
can be applied to object detection and image segmentation [1]. For the safety-critical domain
implementing methods such as object detection and image segmentation is limited. This limitation
is due to the di�culty that comes with veri�cation of the design and the ability to understand how
it behaves during operation [1].

A description made by European Union Aviation Safety Agency (EASA) [1, p. 7] for machine
learning in aviation is as follow: "Machine learning therefore provides major opportunities for the
aviation industry, yet the trustworthiness of such systems needs to be guaranteed".

This paper aims to understand how an object detection model is a�ected by particular vari-
ation in images, speci�cally images of runways during a landing approach. Several methods are
applied to generate both realistic images of an aircraft's perspective during landing and facilitate
an environment that enables applying several types of variations. These variations being changing
airport, alternating environmental conditions and the attitude of the aircraft. Several methods of
replicating distributions from real �ight data are also analysed. These methods are necessary to
ensure that most possible cases of landings are trained on, even those occurring rarely.

In this paper, an image set for training neural networks comes from synthetic images. The
synthetic imagery is produced from a simulated environment where the images represent what
an aircraft observes during a landing approach. This view is necessary as runway detection is
paramount. After training, the object detection model is produced. This model can then predict
the location of the runway in a new set of images.

Real-world data of landing approaches aid in replicating realistic landing approach scenarios.
Due to recent advances in �ight systems, real-world aircraft information is more obtainable. Auto-
matic Dependent Surveillance�Broadcast (ADS-B), allows for simple access of aircraft state in-
formation.

There can be large variations in the environment around a runway. These variations are due
to the dissimilar geographical locations runways are present. Producing image sets by recording
landing approaches in the real world is expensive. Particularly considering the recording plane
would need to operate in many environmental conditions to create a comprehensive image set.

The end goal of this paper is to allow for generating reliable neural networks in the vision
domain. Reliability is increased by understanding how a network responds to variations, thus
knowing which variations are necessary to train on for increasing prediction accuracy. This may
advance the application of vision-based neural networks in the safety-critical domain.

Section 1 contains the introduction, where the problem formulation and research questions are
de�ned. The background to this thesis is located in section 2. Section 3 is the related work,
and section 4 describes the methods used for this thesis. The ethical and societal considerations
are de�ned in section 5. Results from analysis and experimentation are found in section 6. The
discussion in section 7 analyses the results, and, lastly, the conclusion is found in section 8.

1.1 Problem Formulation

Visual-based object detection in conjunction with neural networks is investigated in multiple indus-
tries to improve system awareness of its surroundings. Implementation of such a system requires
high accuracy and robustness to be deemed safe. A neural network only learns as much as the
dataset provides knowledge about the environment. Thus the given dataset must describe the
environment accurately and according to real scenarios. To create datasets with such accuracy
requires a lot of data and the possibility to generate all possible scenarios that can occur. The
dataset must also know all the crucial features in the environment. In the aviation industry, this
would be costly but also needed due to the dependability standard in aviation. When considering
datasets which train neural networks for runway detection capabilities when landing, additional
complications arise. Landing approaches di�er based on weather conditions, airports, and aircraft.
Such di�erences a�ect the applicability of the system between di�erent landing scenarios and air-
ports. This thesis work focuses on generating synthetic datasets in a simulator to represent real
landing scenarios. Manipulation of the simulated environment allows it to cover a wide range of
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landing scenarios. However, di�erences such as the simulated environment's detail compared to
the real world a�ect the accuracy and thus, the system's applicability. The simulator also needs
to present the landing scenario accurately according to how it is performed in real life. Thus,
the investigation will focus on analysing what features are important while creating a dataset for
runway object detection.

1.2 Research Questions

Based on the problems and limitations mentioned in the problem formulation, the following research
questions where derived.

ˆ RQ1: What method of generating distributions from real data produces the highest prediction
accuracy from generated images?

ˆ RQ2: How does changing airport runways a�ect the prediction accuracy of the object detec-
tion?

ˆ RQ3: How does environmental conditions a�ect prediction accuracy of the object detection?

ˆ RQ4: How does aircraft attitude a�ect prediction accuracy of the object detection?

ˆ RQ5: What variables need to be considered when generating reliable datasets used for safety-
critical landing approaches?
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2. Background

In this section, knowledge is presented, which is a prerequisite to understanding the procedures
and results in this thesis.

2.1 Landing Approaches

To achieve a realistic dataset classifying landing approaches, all possible landing scenarios need
to be covered. Based on the Federal Aviation Administration (FAA), factors such as wind speed,
wind direction, turbulent wind, size of the runway, ground e�ects, aeroplane speci�cations, and
obstacles a�ect how the aeroplane shall approach the runway. If landing conditions are not sat-
isfactory for the approach, landing can be rejected. This rejection is usually due to unexpected
hazards on the runway, wind turbulence or mechanical failures. In the case of a rejected landing,
The aeroplane shall perform Go-Around where a new landing approach is performed under more
favourable conditions [2].

2.1.1 Normal Landing Approach

The Standard landing process is considered when engine power is available and low wind is present.
This process is divided into �ve di�erent parts: the base leg, �nal approach, roundout, touchdown,
and after-landing roll. From these parts, the base leg and �nal approach describe the approach
sequence considered in this thesis and a simple example of their function can be seen in Figure
1. The base leg is performed by �nding a gradually descending path resulting in a landing on a
runway's designated point. To �nd this path; altitude, distance to runway, airspeed, and wind
need to be considered. The base leg approach is used until a medium to shallow-banked turn can
align the aeroplane towards the runway centerline. The �nal approach starts when the aeroplane is
aligned towards the runway centerline. From this point; �aps settings and pitch shall be adjusted
for the desired rate of descent and airspeed. The desired rate of descent shall correlate to a landing
at the centre of the �rst third of the runway. Airspeed shall be maintained, so minimum �oating
is achieved before touchdown. Floating are sudden movements that a�ect the aircraft's trajectory
when close to the runway [2].

Figure 1: The �gure is from FAA, Airplane Flying Handbook, Chapter 7 [3]. It shows a simpli�ed
view of the lifting and landing stages. Base leg is performed to �nd a gradually descending path
resulting in a landing on a runway's designated point. The �nal approach focus on �nding a desired
rate of decent towards the runway.
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2.1.2 Windy Conditions

Landing during windy conditions a�ects the aeroplane di�erently depending on the direction of the
wind. Wind parallel to the runway, either facing or in the plane's direction, a�ects airspeed and
lift. The pilot needs to consider these changes in airspeed and lift to land on the desired position.
Wind orthogonal to the runway will cause the plane to drift towards the direction of the wind.
During this wind condition, the crab method and the wing-low method can be used. The crab
method focuses on angling the aeroplane towards the wind, which counteracts the drifting. The
Wing-low method ful�ls the same function as the crab method but instead alters the plane's roll
[2].

2.2 Landing Con�guration and Terminology

An imaginary line is drawn from the runway centerline that extends beyond the runway. This
line has the same angle as the bearing of the runway. The imaginary line is useful as an aid in
determining the lateral position of the aircraft relative to the runway. In this paper, the term
"lateral position" denotes an aircraft's displacement around the runway centerline. The term is
used throughout this paper and is visible as an example in Figure 2.

An aircraft coming in for a landing will be situated in close proximity to the runway centerline,
as a larger deviation will prevent landing. A large deviation will require a larger correction which
may have some risk.

2.2.1 Runway Appearance

The runway designator is based on the angle from the magnetic north to the centerline of the
runway measured clockwise. In parallel runways, the runways will have an L or R for left or right,
if three, L, C and R, where C is Centre. In the case of the runway in Figure 2, it should have a
parallel runway to the right, as the designator is 24L. The opposite direction of the same runway
will also have an identi�cation with the opposite angle (180� shift) and letter. For example, in
Figure 2, the opposite runway identi�cation would be 06R [4].

There are several types of markings on runways to provide information to the pilots when
performing interactions with the runway, such as landing or taking-o�. Some of the markings are
centerline, aimpoint, touchdown zone, threshold and threshold markings. Depending on the type
of runway, some markings may not exist [4].

The width of the runway is determined by the number of stripes in the threshold markings.
Table 1 shows the various widths of runways. The aimpoints purpose is to serve as a visual aid for
landing. The markings on the runway are white [4]. If it is dark, the runway will look di�erent,
as there are lights that guides the pilot on approach. Some markings on the runway may not be
visible.

Runway Width Number of Stripes
60 feet (18 m) 4
75 feet (23 m) 6
100 feet (30 m) 8
150 feet (45 m) 12
200 feet (60 m) 16

Table 1: (Source: FAA Aeronautical Information Manual). Amount of lines in the threshold
markings on runways and the corresponding width of the runway in feet.

2.2.2 Environment Around the Runway

There are also taxiing areas that may look similar to the runway. The runway markings are
white. Other sections located around the runway are yellow. Some examples of sections where
the markings are instead yellow are the taxiways, regions not intended for aircraft's and holding
positions. There may be Air Tra�c Control (ATC) towers present at airports, other aircraft's,
maintenance vehicles, busses, and buildings. Many runways are situated close to cities, in which
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Figure 2: The runway in the image attribution: Mormegil, CC BY-SA 3.0, via Wikimedia Com-
mons. Runway contains multiple markings such as aiming points to aid the pilot during landing.
Terminology and setup of aircraft relative to runway ensure that correct landing procedure are
performed. If correct setup is hard to sustain while landing, these variables can help identify a go
around situation.

there are highways present that can look like runways. At larger airports, there may also be several
runways present. They may be placed in parallel or crossing into each other such as the Skavsta
Airport in Sweden.

2.3 Data

This section include both �ight data from aircraft and information about the airports and runway
locations. This data is both dynamic and static. Flight data is dynamic and can be received
through a system called Automatic Dependent Surveillance�Broadcast (ADS-B). Location inform-
ation about airports is readily available through the Internet and is static.

2.3.1 Automatic Dependent Surveillance�Broadcast

ADS-B is a system on aircraft or surface vehicles that broadcasts state vector or other information.
The ADS-B system is a one-way communication system as it does not require any acknowledgement
from a recipient. There exist two types of ADS-B. One type is called ADS-B OUT, which broadcast
information from the aircraft, and the second type is called ADS-B IN [5]. Aircraft's with ADS-B
IN installed can receive broadcasts from air tra�c, �ight and weather information [6]. ADS-B does
not contain an aircraft's orientational information. Such as the roll, pitch or yaw of the aircraft.

An ADS-B OUT function will collect several parameters for broadcasting. The broadcasted
state vector information contains a summary of tracking parameters such as position, velocity,
track, and identity [7]. The position represents several parameters such as latitude, longitude and
altitude. The positional information from ADS-B comes from Global Navigation Satellite System
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