

Mä lärdälen University
School of Innovätion Design änd Engineering

Vä sterä s, Sweden

Thesis for the Degree of Master of Science in Computer Science with

Specialization in Embedded Systems 30.0 credits

Real-time Process Modelling Based
on Big Data Stream Learning

Fan He
fhe15001@student.mdh.se

Examiner: Thomas Nolte

Supervisor: Ning Xiong

May 17, 2017

Table of Contents

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Contribution and Problem Formulation ... 2

1.3 Outline of Thesis .. 2

2. Background ... 3

2.1 Neural Network .. 3

2.1.1 Neuron ... 3
2.1.2 Feedforward Neural Network .. 6

2.2 Recurrent neural network ... 8

2.3 Deep Learning ... 9

2.3.1 Description ... 9
2.3.2 Deep Recurrent Neural Network ... 11

2.4 Existent Training Algorithms .. 11

2.4.1 Backpropagation Through Time ... 12
2.4.2 Extended Kalman filter ... 17

3. Related Work .. 22

4. Research Method .. 23

5. Training Algorithms Comparison ... 24

6. Proposed Training Method .. 26

6.1 Forward Pass... 26

6.2 Hybrid Training Algorithm .. 27

7. Evaluation ... 29

7.1 Static System ... 29

7.1.1 System Identification .. 29
7.1.2 First Experiment ... 30
7.1.3 Second Experiment .. 32

7.2 Time-varying System ... 33

7.2.1 System Identification .. 33
7.2.2 First Experiment ... 34
7.2.3 Second Experiment .. 36

7.3 Discussion ... 37

8. Conclusion .. 38

9. Future Work .. 39

Reference ... 40

Abstract

Most control systems now are assumed to be unchangeable, but this is an ideal situation.

In real applications, they are often accompanied with many changes. Some of changes are

from environment changes, and some are system requirements. So, the goal of thesis is to

model a dynamic adaptive real-time control system process with big data stream. In this

way, control system model can adjust itself using example measurements acquired during

the operation and give suggestion to next arrival input, which also indicates the accuracy

of states under control highly depends on quality of the process model.

In this thesis, we choose recurrent neural network to model process because it is a kind of

cheap and fast artificial intelligence. In most of existent artificial intelligence, a database

is necessity and the bigger the database is, the more accurate result can be. For example, in

case-based reasoning, testcase should be compared with all of cases in database, then take

the closer one’s result as reference. However, in neural network, it does not need any big

database to support and search, and only needs simple calculation instead, because

information is all stored in each connection. All small units called neuron are linear

combination, but a neural network made up of neurons can perform some complex and

non-linear functionalities. For training part, Backpropagation and Kalman filter are used

together. Backpropagation is a widely-used and stable optimization algorithm. Kalman

filter is new to gradient-based optimization, but it has been proved to converge faster than

other traditional first-order-gradient-based algorithms.

Several experiments were prepared to compare new and existent algorithms under various

circumstances. The first set of experiments are static systems and they are only used to

investigate convergence rate and accuracy of different algorithms. The second set of

experiments are time-varying systems and the purpose is to take one more attribute,

adaptivity, into consideration.

Keywords: control system, real-time process, deep learning, recurrent neural network,

Backpropagation through time, Kalman filter

List of figures

Figure 1 Biological neuron .. 4
Figure 2 Artificial neuron .. 4
Figure 3 Sigmoid function ... 5
Figure 4 RELU function .. 5
Figure 5 Leaky RELU function .. 6
Figure 6 Feedforward neural network structure .. 7
Figure 7 Basic recurrent neural network structure .. 8
Figure 8 Unrolled recurrent neural network structure .. 9
Figure 9 Deep neural network structure ... 10
Figure 10 Modularization in deep neural network ... 10
Figure 11 Deep recurrent neural network structure .. 11
Figure 12 Gradient descent .. 12
Figure 13 General Backpropagation ... 13
Figure 14 Backpropagation through time .. 15
Figure 15 Kalman filter property ... 17
Figure 16 Research method ... 23
Figure 17 Kalman filter fitness .. 24
Figure 18 BPTT fitness ... 24
Figure 19 Prediction steps .. 26
Figure 20 Training algorithm ... 27
Figure 21 Training algorithm in multi-core processor .. 28
Figure 22 BPTT and Kalman filter result in static system .. 30
Figure 23 Accuracy information of BPTT and Kalman filter in static system 30
Figure 24 Proposed algorithm result in static system.. 31
Figure 25 Accuracy information of proposed algorithm in static system 31
Figure 26 Result of second experiment in static system ... 32
Figure 27 Accuracy information of second experiment in static system 32
Figure 28 BPTT and Kalman filter result in time-varying system 34
Figure 29 Accuracy information of BPTT and Kalman filter in time-varying system 34
Figure 30 Proposed algorithm result in time-varying system................................... 35
Figure 31 Accuracy information of proposed algorithm in time-varying system 35
Figure 32 Result of second experiment in time-varying system 36
Figure 33 Accuracy information of second experiment in time-varying system 36

 List of Tables

Table 1 Sliding window ... 26

1

1. Introduction

1.1 Motivation

With the increasing demands of accuracy and prediction, applications and technologies of

real-time control systems will be the research trend. They need to process data and perform

some predetermined requirements in specified time intervals. [1][2] However, most of

models in control systems are designed to learn offline based on training data, [3][4] which

means once the model is complete and used, it will not be changed anymore unless the

controlled plant is out of service. But in real applications, there can be a lot of changes

during operation, so it is necessary to model a real-time control system process. There are

two key tasks in a real-time control system to get optimal control. First is constructing the

process model used in real-time system to forecast future states. And second is setting

control variables dynamically based on prediction results to get expected behavior.

Obviously, the accuracy of states under control highly depends on quality of the process

model. Since adaptive feedback control process is from simulation of human operation,

some researchers try to use Artificial Neural Network (ANN), which mimics a biological

brain in a computational way and solves problem like humans do in real life.

ANN has been one hot research topic of artificial intelligence since 1980s. Over the past

decade, ANN has got great development in solving pattern recognition, automation,

biology and other difficult practical problems. Inspired by biological neural network, an

ANN is groups of connected small processing units called artificial neuron and they form

an abstract oriented network. Input signal propagates through network in the direction of

connection. In contrast with biological neural network, connections between artificial

neurons are not added or removed. They are weighted instead and weights are updated

using learning algorithms. In supervised learning, learning algorithm adjusts weights and

tries to minimize error between prediction output and desired output provided by training

examples. [5]

A complete artificial neural network often refers to many training examples. This is the

reason we choose a big data stream to train the network so that it can continually change

the network all the time to adapt to changes in the system. Big data has been another hot

research topic in the past ten years. It can be used in predictive analytics or other advanced

data analytics, because large amount of data can help to get more accurate or expected

outcomes undoubtedly. The term of big data has been used since 1990s. Big data is usually

described by its characteristics. Laney was the first to define data growth challenges and

opportunities with three dimensions: Volume, Velocity and Variety, known as 3V's of data.

[6] Additional V's have been added by some organizations over ten years, like variability

and veracity. [7]

2

1.2 Contribution and Problem Formulation

The aim of thesis is to design and implement a prototype self-learning prediction system

with big data stream in a real-time process control framework so that the predicted future

states can be used to predict next arrival input or modify the actual arrival input because of

noise and other uncertainties. In this way, the response of a control system can be quicker

and the dynamic process can be smoother. By self-learning, we mean the update of the

model using example measurements acquired during the operation. In other words, the

system adjust itself based on history information to predict future states and get better input

and all desired inputs and outputs are from a data stream which can be a big data stream or

an infinite data stream.

Since no one did some similar things before, the following research points should be

considered in thesis.

1. Is neural network suitable for online mode in control system modeling? If the answer is

yes, how to apply it to data stream learning?

Since neural network has been proved to be efficient in most offline real applications, only

few researchers tried it in a dynamic way. This should be validated first because it is the

base of using neural network to model the real-time control system process. Offline

learning and online learning are completely different in design. A new way should be

developed for online training.

2. What are differences among existing training algorithms? Can they all be used in online

learning?

Training is the most difficult part in neural network modeling, because the structure is

settled and the only difference between two neural networks is the choice of training

method. So, we need to investigate them and know what are pros and cons of each one.

3. Can neural network be fast enough in a real-time system?

With the increase of data, demand of time will also grow at the same time, but real-time is

a time-critical definition. Most real-time systems have hard deadlines and task period is

short, so each training phase must be finished and provide high prediction accuracy in a

limited time interval. This gives high timing requirements.

1.3 Outline of Thesis

In Section 2, background of neural network is introduced and related work is given in

Section 3. Section 4 gives the research methodology used in the thesis. Training algorithms

deployed in thesis work are fully detailed in Section 5. Section 6 describes the system

model in detail, including prediction and training parts. Evaluation results are presented

and discussed in Section 7. Conclusion are drawn and future work is also mentioned at the

end.

3

2. Background

In this section, some basic definitions and structures of neural network are introduced,

including neuron, feedforward neural network, deep learning and recurrent neural

network.

2.1 Neural Network

A neural network is a parallel non-linear system which is composed of huge amount of

connected process units. Although functionality of each unit is very simple, the network

can still provide various and complex functionalities. This means information is not stored

in any specific area. It is stored in every connection instead. In all, distribution and

parallelism can bring great fault tolerance. First, because of distribution, if some neurons

are broken, they will not degrade overall performance. For example, in real life, there are

many nerve cells dying every day, but the human brain can still work well.[8] In artificial

neural network, it is the same that part of broken units will not influence overall

performance. Second, when input information is not clear or some information is missing,

network can still recover the whole memory. Therefore, humans can recognize irregular

handwriting.

Another characteristic of neural network is adaptivity. Adaptivity includes self-study and

self-organization. Self-study means once environment changes, after a period of training

time or perception, network can adjust some internal parameters automatically to give an

expected output. And neural network can adjust the connection between two neurons

according to certain rules to construct a complete network, which is called self-organization.

2.1.1 Neuron

One human brain consists of 1010 to 1012 units called neurons, which is a huge complex

parallel information processing system. Each neuron is connected to other millions of

neurons and communicates with them via electrochemical signals. Neuron continuously

receives signal via synapses, located at the end of branches as shown in figure 1, and then

performs in some specific ways. If the result is greater than the pre-defined threshold value,

neuron will fire and generate a voltage and output a signal along something called an axon.

[9]

4

Figure 1 Biological neuron

In ANN, network is made up of many artificial neurons. These modelled neurons perform

together in similar way to simulate human brain in a math way. The number of neurons

can be as small as unit's digit or as big as thousand's digit. Each input into the neuron has

its own corresponding weight. A weight is often a floating-point number and it is what to

be adjusted when network is trained. Weights in neural network can be both negative and

positive and each input is multiplied by its corresponding weight to get linear combination.

Inputs and weights can be represented as 𝑥1, 𝑥2…𝑥𝑛 and 𝑤1, 𝑤2…𝑤𝑛 . So, the linear

combination can be written as:

 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 +⋯+ 𝑥𝑛𝑤𝑛 =∑𝑥𝑗𝑤𝑗

𝑛

𝑗=0

 (1)

The following picture is a basic artificial neuron structure.

Figure 2 Artificial neuron

From figure 2, after calculating linear combination, unit gives activation σ , which is

generally sigmoid function.

5

 sigmoid function: f(x) =
1

1 + 𝑒−𝑥
 (2)

Figure 3 Sigmoid function

In this project, a new and popular activation function called Rectified Linear Units (RELU)

is used.

 RELU function: f(x) = max(0, 𝑥) (3)

Figure 4 RELU function

It is from biology with same effect as sigmoid function. It can reduce possibility of

vanishing gradient problem when training neural network, especially in deep neural

network. And The other benefit of RELU is sparsity. Sparsity means the network can use

as few non-zero values as possible to represent extracted features and it arises when

linear combination ≤ 0 . The more units exist in a layer, the sparser resulting

representation can be. On the other hand, Sigmoid always generates non-zero values to

give dense representations. Obviously, sparse representations are more beneficial than

dense representations. [10]

However, RELU is not all-mighty. It may be "dead" during training. If absolute value of

one dimension of weights is larger than expected, it may cause the weight that the neuron

6

will never activate on any example again, which means the gradient will be zero forever

and RELU units will irreversibly die during training. A network will be "dead" with high

probability if the learning rate is too high. It is also called "dying RELU" problem. With a

proper setting of learning rate, this is less frequently an issue. Or another solution is to use

leaky RELU.

 Leaky RELU function: f(x) = max (0.01𝑥, 𝑥) (4)

Figure 5 Leaky RELU function

When linear combination < 0, the function output is very small and we can ignore its

value to some extent, but in the same time, it also prevents dying RELU problem. Therefore,

it is widely used in deep neural network now.

2.1.2 Feedforward Neural Network

One common way of connecting neurons is to organize neurons into a design called

feedforward neural network. It gets its name from the way that neurons in each layer are

connected to next layer and feed their output again forward to the third layer until getting

final output from neural network. The following is a very simple three-layer feedforward

network.

7

Figure 6 Feedforward neural network structure

Each neuron receives input values from the previous layer and sends output to next layer

without feedback. All neurons in a network can be categorized in three kinds: input, hidden

and output. Input neurons compose input layer. This layer only performs communication

and sends information into network. In the same way, output layer consists of output

neurons and receives information from network. Input layer and output layer are directly

connected to environment, so they are called visible layers as well. Hidden layers, also

called middle layers, do not have any relationship with outside. In hidden layers and output

layer, every unit has multiple inputs, but only one output, which is also one of the input for

next layer. The picture above is a fully-connected network, and each neuron in one layer is

connected to all of neurons in the previous layer, including one special neuron whose value

equals +1. The special one is for bias and its main functionality is affine transformation.

The correct output representation of one neuron should be:

 output = σ(1 ∗ 𝑏𝑘 +∑𝑥𝑗𝑤𝑗

𝑛

𝑗=1

) (5)

So, bias is often seen as a part of weights (𝑤0) and corresponding input as +1. This

assumption not only makes structure clear, but also makes calculation less complex.

We can see that hidden layers play an important role in a feedforward neural network

because they can grab high-order statistical features. The more layers it has, the more

valuable this ability can be. To start from the macro-view, a feedforward neural network is

a static non-linear mapping system. It obtains powerful non-linear processing ability by

some simple non-linear composite mappings.

8

2.2 Recurrent neural network

Unlike feedforward neural network, recurrent neural network (RNN) can use its internal

memory to remember and process sequential data. This makes them applicable to time

series prediction tasks. [11]

The idea behind RNN is to make use of sequential information. In a traditional feedforward

neural network, all inputs, states and outputs are independent of each other. But for many

real applications, this is a very bad idea. For example, if you want to predict the next word

in a sentence you had better know which words came before. RNN can do this because

they perform same tasks on every element of a sequence and they have a "memory" which

collects information about what has been calculated so far.

The following case of basic structure was the first RNN by Jeff Elman. A three-layer

network was used, with the addition of a set of "context units". There are connections from

the hidden layer to these context units fixed with a weight of one. [12]

Figure 7 Basic recurrent neural network structure

However, the picture above is not a good way to show how it works, so typically, an

unrolled diagram is used, as figure 8 shows, where rectangle means a whole layer with

several neurons, including bias.

9

Figure 8 Unrolled recurrent neural network structure

By unrolling, it simply means that network can be written with complete sequence. For

example, if the sequence is a sentence of 5 words, the network would be unrolled into a 5-

layer neural network, one layer for each word.

The key point and difference between RNN and traditional ANN is that output of hidden-

layer not only refers to inputs, but also depends on the hidden-layer states from previous

time steps. We can use the following equations to calculate:

 𝑜𝑡 = 𝜎(V𝑆𝑡) = 𝜎 (∑𝑣𝑘𝑗𝑠𝑗(𝑡)

𝑗

) (6)

 𝑆𝑡 = 𝜎(𝑈𝑋𝑡 +𝑊𝑆𝑡−1) (7)

Equation (6) is calculation of output layer. Each neuron in output layer is connected to all

of neurons in last hidden layer, so it is a fully-connected layer. V is weights matrix of output

layer. Equation (7) is calculation of hidden layers, which are recurrent layers. U and W

are weights matrixes of input layer and hidden layer at previous time step respectively.

There are 3 kinds of recurrent neural network structure for different problems: many-to-

one, many-to-many and many-to-many with delay. Many-to-one is used in trend prediction

or regression problem. It has totally multiple inputs in different unfolding networks, but

only one output. Many-to-many is generally used in typing correction. For example, it is

common that someone missed one letter when typing one word or someone do not

remember the correct spelling, then the system can detect it and correct it automatically.

The third one, many-to-many with delay, is widely used in mobile phones. It is the best

solution to word association. Output starts after a complete input words sequence or just

one word, then network captures some important information from the input sequence and

tells what is the meaning input says and search the most relevant words in database.

2.3 Deep Learning

2.3.1 Description

Various high-level descriptions of deep learning include two key aspects:

10

 Models consisting of multiple layers of non-linear information processing;

Figure 9 Deep neural network structure

 Methods for supervised or unsupervised learning of feature representation at

successively higher, more abstract layers.

Deep learning is in the intersections among research areas of neural network and artificial

intelligence. Three important reasons why deep learning is so popular now are the greatly

increased chip processing abilities, the significantly increased size of training data, and the

recent advances in machine learning and information processing research, which have

enabled deep learning methods to effectively exploit complex, compositional non-linear

functions, to learn hierarchical feature representations. [13]

One traditional deep learning network has the same structure as shallow neural network

like figure 9 shows. It can also use a flow graph to show how the calculation works. But

one of special attribute is depth, which is the length of the longest path from input layer to

output layer. One more hidden layer means more abstract and features can be subdivided.

For example, there is a picture and we want to identify whether the person in this picture

is a boy or a girl with long or short hair. The following picture shows why a deep network

can work better than a one-hidden-layer neural network: [14]

Figure 10 Modularization in deep neural network

11

2.3.2 Deep Recurrent Neural Network

Deep recurrent neural network is the final choice in this project. Compared with traditional

deep neural network, it has recurrent hidden layers to store history information to deal with

sequential problem. And as mentioned before, the more hidden layers there are in a neural

network, the stronger the ability that can grab high-order statistical features is. So, it can

solve more complex systems and make more precise results than a shallow recurrent neural

network. [15]

Figure 11 Deep recurrent neural network structure

2.4 Existent Training Algorithms

To train a recurrent neural network, one of widely-used and efficient method is

Backpropagation through time (BPTT) learning algorithm. BPTT comes from

Backpropagation algorithm (BP), but it takes time steps into consideration to be applicable

to RNN. [24] In this project, another algorithm, Kalman filter, is also used, Since Kalman

filter only works for linear system, a compromised method, extended Kalman filter (EKF),

is employed to make it combined with gradient and weight,

Gradient descent, also known as steepest descent, is a basic idea to minimize a function

J(𝜃0, 𝜃1, … , 𝜃𝑛) by updating parameters in the opposite direction of gradient. The learning

rate η is the size of steps. In other words, the output is like a ball. It rolls downhill on the

surface of function in the direction of slope until reaching valley.

12

Figure 12 Gradient descent

2.4.1 Backpropagation Through Time

2.4.1.1 General Backpropagation

General BP is a basic optimization for feedforward neural network.

Backpropagation steps

1

Initialization: If it is a totally new network, then randomize all of weights.

They should be a normal distribution with 0 being mean value and 1 being

variance.

2 Provide training examples set {(𝑥(𝑛), 𝑑(𝑛))}𝑛=1
𝑁 .

3 Calculate outputs of hidden layers and output layer of each training example.

4
Calculate error between prediction result and desired result and propagate

error signal to each hidden layer.

5 Update all of weights based on error signal.

6 Iteration: Back to step 3 until the network satisfy given rules.

A neural network with the following parameters:

 𝑤𝑘𝑗
𝑙 means the weight from 𝑘𝑡ℎ neurons in (𝑙 − 1)𝑡ℎ layer to 𝑗𝑡ℎneurons in 𝑙𝑡ℎ layer.

 𝑏𝑗
𝑙 means the bias for 𝑗𝑡ℎ neurons in 𝑙𝑡ℎ layer.

 𝑧𝑗
𝑙 means the linear combination of 𝑗𝑡ℎ neurons in 𝑙𝑡ℎ layer:

 𝑧𝑗
𝑙 = 𝑏𝑗

𝑙 +∑𝑤𝑘𝑗
𝑙 𝑎𝑘

𝑙−1

𝑘

 (8)

13

 𝑎𝑗
𝑙 means the output of 𝑗𝑡ℎ neurons in 𝑙𝑡ℎ layer:

 𝑎𝑗
𝑙 = σ(𝑏𝑗

𝑙 +∑𝑤𝑘𝑗
𝑙

𝑘

𝑎𝑘
𝑙−1) (9)

Backpropagation learning algorithm can be divided into two phases: backward propagation

and weight update.

First is backward propagation. We need to define a loss function for output first. Then,

propagate error signal back to all output and hidden neurons. A commonly-used loss

function is root-mean-square deviation.

 E =
1

2
(𝑦(𝑥) − 𝑎𝐿(x))2 (10)

x and y are training examples' input and output (desired input and output) respectively. 𝑎𝐿

is the prediction value and L is maximum of layer number.

Figure 13 General Backpropagation

Error term of 𝑗𝑡ℎ neurons in 𝑙𝑡ℎ layer is defined as:

 𝛿𝑗
𝑙 =

𝜕𝐸

𝜕𝑧𝑗
𝑙 (11)

So, the error term of last (output) layer is:

 𝛿𝐿 =
𝜕𝐸

𝜕𝑧𝑗
𝐿 =

𝜕𝐸

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 =

𝜕𝐸

𝜕𝑎𝐿
𝜎′(𝑧𝐿) (12)

14

Then, based on the calculated error term of last (output) layer, calculate other error terms

backward layer by layer.

𝛿𝑗
𝑙 =

𝜕𝐸

𝜕𝑧𝑗
𝑙 =∑

𝜕𝐸

𝜕𝑧𝑚
𝑙+1

𝜕𝑧𝑚
𝑙+1

𝜕𝑎𝑗
𝑙

𝜕𝑎𝑗
𝑙

𝜕𝑧𝑗
𝑙

𝑚

= 𝛿𝑚
𝑙+1

𝜕(𝑏𝑚
𝑙+1 + ∑ 𝑤𝑗𝑚

𝑙+1 ∗ 𝑎𝑗
𝑙

𝑚)

𝜕𝑎𝑗
𝑙 𝜎′(𝑧𝑗

𝑙)

=∑𝛿𝑚
𝑙+1𝑤𝑗𝑚

𝑙+1𝜎′(𝑧𝑗
𝑙)

𝑚

(13)

After calculating all of neurons' error terms, the next step is calculating each bias.

𝜕𝐸

𝜕𝑏𝑗
𝑙 =

𝜕𝐸

𝜕𝑧𝑗
𝑙

𝜕𝑧𝑗
𝑙

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙
𝜕(𝑏𝑗

𝑙 + ∑ 𝑤𝑘𝑗
𝑙 𝑎𝑘

𝑙−1
𝑘)

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 (14)

And each dimension of weights.

𝜕𝐸

𝜕𝑤𝑘𝑗
𝑙 =

𝜕𝐸

𝜕𝑧𝑗
𝑙

𝜕𝑧𝑗
𝑙

𝜕𝑤𝑘𝑗
𝑙 = 𝛿𝑗

𝑙
𝜕(𝑏𝑗

𝑙 + ∑ 𝑤𝑘𝑗
𝑙 𝑎𝑘

𝑙−1
𝑘)

𝜕𝑤𝑘𝑗
𝑙 = 𝛿𝑗

𝑙𝑎𝑘
𝑙−1 (15)

The third phase is weight update.

{

 𝑤𝑘𝑗

𝑙 − ∇𝑤𝑘𝑗
𝑙 = 𝑤𝑘𝑗

𝑙 − 𝜂
𝜕𝐸

𝜕𝑤𝑘𝑗
𝑙

𝑏𝑗
𝑙 − ∇𝑏𝑗

𝑙 = 𝑏𝑗
𝑙 − 𝜂

𝜕𝐸

𝜕𝑏𝑗
𝑙

 (16)

2.4.1.2 Backpropagation Through Time

BPTT do same things but do not only backpropagate to input layer but also to hidden layers

in previous time steps to update weights. The following pictures simply shows how error

signal is propagated through each hidden layer at different time steps.

15

Figure 14 Backpropagation through time

 𝑤𝑘𝑗
𝑙 means the weight from 𝑘𝑡ℎ neurons in (𝑙 − 1)𝑡ℎ layer to 𝑗𝑡ℎneurons in 𝑙𝑡ℎ layer.

 𝑣𝑖𝑗
𝑙 means the weight from 𝑖𝑡ℎ neurons in 𝑙𝑡ℎ layer in unfolding 𝑢 + 1𝑡ℎ time to

𝑗𝑡ℎneurons in 𝑙𝑡ℎ layer at unfolding 𝑢𝑡ℎ time.

 𝑏𝑗
𝑙 means the bias of 𝑗𝑡ℎ neurons in 𝑙𝑡ℎ layer.

 𝑧𝑗𝑢
𝑙 means linear combination of 𝑗𝑡ℎ neurons in 𝑙𝑡ℎ layer at unfolding 𝑢𝑡ℎ time.

{

 𝑧𝑗𝑢

𝑙 = 𝑏𝑗
𝑙 +∑𝑤𝑘𝑗

𝑙 𝑎𝑘𝑢
𝑙−1

𝑘

+∑𝑣𝑖𝑗
𝑙 𝑎𝑖,𝑢+1

𝑙

𝑖

, u < U

𝑧𝑗𝑢
𝑙 = 𝑏𝑗

𝑙 +∑𝑤𝑘𝑗
𝑙 𝑎𝑘𝑢

𝑙−1

𝑘

, u = U
 (17)

 𝑎𝑗𝑢
𝑙 means the output for 𝑗𝑡ℎ neurons in 𝑙𝑡ℎ layer at unfolding 𝑢𝑡ℎ time.

{

 𝑎𝑗𝑢

𝑙 = σ(𝑏𝑗
𝑙 +∑𝑤𝑘𝑗

𝑙 𝑎𝑘𝑢
𝑙−1

𝑘

+∑𝑣𝑖𝑗
𝑙 𝑎𝑖,𝑢+1

𝑙

𝑖

) , u < U

𝑎𝑗𝑢
𝑙 = σ(𝑏𝑗

𝑙 +∑𝑤𝑘𝑗
𝑙 𝑎𝑘𝑢

𝑙−1

𝑘

) , u = U

 (18)

16

The error term of last (output) layer is the same as BP because output layer is not a recurrent

layer:

 𝛿𝐿 =
𝜕𝐸

𝜕𝑧𝑗
𝐿 =

𝜕𝐸

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 =

𝜕𝐸

𝜕𝑎𝐿
𝜎′(𝑧𝐿) (19)

Then, based on the error term of last (output) layer, we can calculate other error terms

backward layer by layer.

𝛿𝑗𝑢
𝑙 =

𝜕𝐸

𝜕𝑧𝑗𝑢
𝑙

=∑
𝜕𝐸

𝜕𝑧𝑚𝑢
𝑙+1 ∗

𝜕𝑧𝑚𝑢
𝑙+1

𝜕𝑎𝑗𝑢
𝑙 ∗

𝜕𝑎𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙 +∑

𝜕𝐸

𝜕𝑧𝑛,𝑢−1
𝑙 ∗

𝜕𝑧𝑛,𝑢−1
𝑙

𝜕𝑎𝑗𝑢
𝑙 ∗

𝜕𝑎𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝑛𝑚

= 𝛿𝑚𝑢
𝑙+1

𝜕(𝑏𝑚
𝑙+1 + ∑ 𝑤𝑗𝑚

𝑙+1 ∗ 𝑎𝑗𝑢
𝑙

𝑚 + ∑ 𝑣𝑔𝑚
𝑙+1 ∗ 𝑎𝑔,𝑢+1

𝑙+1
𝑔)

𝜕𝑎𝑗𝑢
𝑙 σ′(𝑧𝑗𝑢

𝑙)

+ 𝛿𝑛,𝑢−1
𝑙

𝜕(𝑏𝑛
𝑙 + ∑ 𝑤ℎ𝑛

𝑙 ∗ 𝑎ℎ,𝑢−1
𝑙−1

ℎ +∑ 𝑣𝑗𝑛
𝑙 ∗ 𝑎𝑗𝑢

𝑙
𝑛)

𝜕𝑎𝑗𝑢
𝑙 𝜎′(𝑧𝑗𝑢

𝑙)

=∑𝛿𝑚𝑢
𝑙+1𝑤𝑗𝑚

𝑙+1𝜎′(𝑧𝑗𝑢
𝑙)

𝑚

+∑𝛿𝑛,𝑢−1
𝑙 𝑣𝑗𝑛

𝑙 𝜎′(𝑧𝑗𝑢
𝑙)

𝑛

, u > 1

(20)

𝛿𝑗𝑢
𝑙 =

𝜕𝐸

𝜕𝑧𝑗𝑢
𝑙 =∑

𝜕𝐸

𝜕𝑧𝑚𝑢
𝑙+1 ∗

𝜕𝑧𝑚𝑢
𝑙+1

𝜕𝑎𝑗𝑢
𝑙 ∗

𝜕𝑎𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝑚

= 𝛿𝑚𝑢
𝑙+1

𝜕(𝑏𝑚
𝑙+1 + ∑ 𝑤𝑗𝑚

𝑙+1 ∗ 𝑎𝑗𝑢
𝑙

𝑚 + ∑ 𝑣𝑔𝑚
𝑙+1 ∗ 𝑎𝑔,𝑢+1

𝑙+1
𝑔)

𝜕𝑎𝑗𝑢
𝑙 σ′(𝑧𝑗𝑢

𝑙)

=∑𝛿𝑚𝑡
𝑙+1𝑤𝑗𝑚

𝑙+1𝜎′(𝑧𝑗𝑢
𝑙)

𝑚

, u = 1

(21)

After calculating all of neurons' error terms, the next step is calculating each bias.

𝜕𝐸

𝜕𝑏𝑗𝑢
𝑙 =

𝜕𝐸

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑏𝑗
𝑙 = 𝛿𝑗𝑢

𝑙
𝜕(𝑏𝑗

𝑙 + ∑ 𝑤𝑘𝑗
𝑙 𝑎𝑘𝑢

𝑙−1
𝑘 + ∑ 𝑣𝑖𝑗

𝑙 𝑎𝑖,𝑢+1
𝑙

𝑖)

𝜕𝑏𝑗
𝑙

= 𝛿𝑗𝑢
𝑙

(22)

And each dimension of weights.

17

𝜕𝐸

𝜕𝑤𝑘𝑗𝑢
𝑙 =

𝜕𝐸

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑤𝑘𝑗
𝑙

= 𝛿𝑗𝑢
𝑙
𝜕(𝑏𝑗

𝑙 + ∑ 𝑤𝑘𝑗
𝑙 𝑎𝑘𝑢

𝑙−1
𝑘 + ∑ 𝑣𝑖𝑗

𝑙 𝑎𝑖,𝑢+1
𝑙

𝑖)

𝜕𝑤𝑘𝑗
𝑙

= 𝛿𝑗𝑡
𝑙 𝑎𝑘𝑢

𝑙−1

(23)

𝜕𝐸

𝜕𝑣𝑖𝑗𝑢
𝑙 =

𝜕𝐸

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑣𝑖𝑗
𝑙 = 𝛿𝑗𝑢

𝑙
𝜕(𝑏𝑗

𝑙 + ∑ 𝑤𝑘𝑗
𝑙 𝑎𝑘𝑢

𝑙−1
𝑘 + ∑ 𝑣𝑖𝑗

𝑙 𝑎𝑖,𝑢+1
𝑙

𝑖)

𝜕𝑣𝑖𝑗
𝑙

= 𝛿𝑗𝑡
𝑙 𝑎𝑖,𝑢+1

𝑙

(24)

The third phase is weight update.

{

 𝑤𝑘𝑗

𝑙 − ∇𝑤𝑘𝑗
𝑙 = 𝑤𝑘𝑗

𝑙 − 𝜂∑
𝜕𝐸

𝜕𝑤𝑘𝑗𝑢
𝑙

𝑢

𝑣𝑖𝑗
𝑙 − ∇𝑣𝑖𝑗

𝑙 = 𝑣𝑖𝑗
𝑙 − 𝜂∑

𝜕𝐸

𝜕𝑣𝑖𝑗𝑢
𝑙

𝑢

𝑏𝑗
l − ∇𝑏𝑗

𝑙 = 𝑏𝑗
𝑙 − 𝜂∑

𝜕𝐸

𝜕𝑏𝑗𝑢
𝑙

𝑢

 (25)

2.4.2 Extended Kalman filter

Kalman filter is an algorithm that uses states from previous time steps, inputs at current

time step and noise (typically Gaussian noise) to give an estimated state. It has been widely

used in dynamic control systems, such as robot, aircraft and spacecraft and so on. Moreover,

because of its characteristics, it can also be applicable to time series prediction in

communication and economy. The main idea behind Kalman filter is to update states and

covariance of states to preliminary guesses by extrapolating from previous values. Then

adjust these preliminary guesses by incorporating the information contained in

measurements. And the key property of Kalman filter is the product of two Gaussian

functions is another Gaussian function. [25]

Figure 15 Kalman filter property

18

In this thesis, Kalman filter is combined with terms of gradient and weight. However, the

original Kalman filter is limited to linear dynamic systems. If the system is non-linear,

which is the case of neural network, it will not work. So, we must extend Kalman filter by

linearization procedure, which is called extended Kalman filter (EKF). [26][27] To apply

EKF to the task of estimating weights of neural network, we need to see weights as states

in dynamic systems. To start from the macro-view, the network is like:

 output = h(w, input(0,1,… , n)) (26)

If we render function h a time-dependent function ℎ𝑛, it will become what we need, a

function between weights and output, which can be transformed into input and output in

EKF:

 output = ℎ𝑛(𝑤(𝑛)) (27)

There are only 2 phases in Kalman filter, predict and update.

 Predict

1. Predict current state based on the previous state and current input.

 𝑥𝑡|𝑡−1̂ = 𝐹𝑡𝑥𝑡−1|𝑡−1̂ +𝐵𝑡𝑢𝑡 (28)

Where:

● t is the time step.

● 𝑥𝑡 is the state containing the terms of interest for the system. In neural network

training, it represents weight.

● 𝐹𝑡 is the state transition matrix. In neural network training, since weights are

assumed to be equal when they are at 𝑡𝑡ℎ time step and 𝑡 − 1𝑡ℎ time step, so 𝐹𝑡 is

identity matrix.

● 𝐵𝑡 is the control input matrix which applies the effect of each control input. For

weights in neural network, there is no input, so 𝐵𝑡 is 0.

● 𝑢𝑡 is is the control input. We do not need new input for training.

2. Predict covariance.

 𝑃𝑡|𝑡−1 = 𝐹𝑡𝑃𝑡−1|𝑡−1𝐹𝑡
𝑇 + 𝑄𝑡 (29)

Where:

● 𝑃𝑡 is the covariance matrix which stores variances and covariances of states

(weights).

19

● 𝑄𝑡 is the process noise covariance matrix of noisy control inputs

 Update

1. Calculate covariance of residual

 𝑆𝑡 = 𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡
𝑇 + 𝑅𝑡 (30)

𝐻𝑡 is the transformation matrix that maps states into measurements. This is the only

difference in training neural network between original Kalman filter and EKF. In

original Kalman filter, measurements of the linear system can be described as

 𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡 , 𝑣𝑡~𝑁(0, 𝑅𝑡) (31)

Where 𝑅𝑡 is the measurement noise covariance.

By contrast, in EKF, the measurement model need not be linear functions of states but

non-linear functions instead.

 𝑧𝑡 = ℎ(𝑥𝑡) + 𝑣𝑡 , 𝑣𝑡~𝑁(0, 𝑅𝑡) (32)

It is obvious that function h cannot be applied to covariance calculation directly.

Instead, a matrix of partial derivatives is computed. The basic idea is linearization of

the latest state estimate ℎ(𝑥𝑡). The first-order Taylor series is used to make it linearized.

 ℎ(𝑥𝑡) ≈ h(�̅�) + h
′(�̅�)(𝑥𝑡 − 𝜇�̅�) = h(�̅�) + 𝐻𝑡(𝑥𝑡 − 𝜇�̅�) (33)

In BP, Gradient is partial derivative of error with respect to each weight, but in EKF,

it should be partial derivative of output with respect to each weight 𝐻𝑡 =
𝜕ℎ(𝑥𝑡)

𝜕𝑥
. So,

the error term of output layer is replaced with "output term":

 𝛾𝐿 =
𝜕ℎ

𝜕𝑧𝑗
𝐿 =

𝜕ℎ

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 =

𝜕ℎ

𝜕𝑎𝐿
𝜎′(𝑧𝐿) (34)

Then calculate the other "output terms" backward layer by layer as BPTT does.

20

𝛾𝑗𝑢
𝑙 =

𝜕ℎ

𝜕𝑧𝑗𝑢
𝑙

=∑
𝜕ℎ

𝜕𝑧𝑚𝑢
𝑙+1 ∗

𝜕𝑧𝑚𝑢
𝑙+1

𝜕𝑎𝑗𝑢
𝑙 ∗

𝜕𝑎𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙 +∑

𝜕ℎ

𝜕𝑧𝑛,𝑢−1
𝑙 ∗

𝜕𝑧𝑛,𝑢−1
𝑙

𝜕𝑎𝑗𝑢
𝑙 ∗

𝜕𝑎𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝑛𝑚

= 𝛾𝑚𝑢
𝑙+1

𝜕(𝑏𝑚
𝑙+1 + ∑ 𝑤𝑗𝑚

𝑙+1 ∗ 𝑎𝑗𝑢
𝑙

𝑚 + ∑ 𝑣𝑔𝑚
𝑙+1 ∗ 𝑎𝑔,𝑢+1

𝑙+1
𝑔)

𝜕𝑎𝑗𝑢
𝑙 σ′(𝑧𝑗𝑢

𝑙)

+ 𝛾𝑛,𝑢−1
𝑙

𝜕(𝑏𝑛
𝑙 + ∑ 𝑤ℎ𝑛

𝑙 ∗ 𝑎ℎ,𝑢−1
𝑙−1

ℎ + ∑ 𝑣𝑗𝑛
𝑙 ∗ 𝑎𝑗𝑢

𝑙
𝑛)

𝜕𝑎𝑗𝑢
𝑙 𝜎′(𝑧𝑗𝑢

𝑙)

=∑𝛾𝑚𝑢
𝑙+1𝑤𝑗𝑚

𝑙+1𝜎′(𝑧𝑗𝑢
𝑙)

𝑚

+∑𝛾𝑛,𝑢−1
𝑙 𝑣𝑗𝑛

𝑙 𝜎′(𝑧𝑗𝑢
𝑙)

𝑛

, u > 1

(35)

𝛾𝑗𝑢
𝑙 =

𝜕ℎ

𝜕𝑧𝑗𝑢
𝑙 =∑

𝜕ℎ

𝜕𝑧𝑚𝑢
𝑙+1 ∗

𝜕𝑧𝑚𝑢
𝑙+1

𝜕𝑎𝑗𝑢
𝑙 ∗

𝜕𝑎𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝑚

= 𝛾𝑚𝑢
𝑙+1

𝜕(𝑏𝑚
𝑙+1 + ∑ 𝑤𝑗𝑚

𝑙+1 ∗ 𝑎𝑗𝑢
𝑙

𝑚 + ∑ 𝑣𝑔𝑚
𝑙+1 ∗ 𝑎𝑔,𝑢+1

𝑙+1
𝑔)

𝜕𝑎𝑗𝑢
𝑙 σ′(𝑧𝑗𝑢

𝑙)

=∑𝛾𝑚𝑢
𝑙+1𝑤𝑗𝑚

𝑙+1𝜎′(𝑧𝑗𝑢
𝑙)

𝑚

, u = 1

(36)

After calculating all of neurons' terms, calculate each bias.

𝜕ℎ

𝜕𝑏𝑗𝑢
𝑙 =

𝜕ℎ

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑏𝑗
𝑙 = 𝛾𝑗𝑢

𝑙
𝜕(𝑏𝑗

𝑙 +∑ 𝑤𝑘𝑗
𝑙 𝑎𝑘𝑢

𝑙−1
𝑘 + ∑ 𝑣𝑖𝑗

𝑙 𝑎𝑖,𝑢+1
𝑙

𝑖)

𝜕𝑏𝑗
𝑙

= 𝛾𝑗𝑢
𝑙

(37)

And each dimension of weights.

𝜕ℎ

𝜕𝑤𝑘𝑗𝑢
𝑙 =

𝜕ℎ

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑤𝑘𝑗
𝑙

= 𝛾𝑗𝑢
𝑙
𝜕(𝑏𝑗

𝑙 + ∑ 𝑤𝑘𝑗
𝑙 𝑎𝑘𝑢

𝑙−1
𝑘 + ∑ 𝑣𝑖𝑗

𝑙 𝑎𝑖,𝑢+1
𝑙

𝑖)

𝜕𝑤𝑘𝑗
𝑙

= 𝛾𝑗𝑢
𝑙 𝑎𝑘𝑢

𝑙−1

(38)

𝜕ℎ

𝜕𝑣𝑖𝑗𝑢
𝑙 =

𝜕ℎ

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑧𝑗𝑢
𝑙

𝜕𝑣𝑖𝑗
𝑙 = 𝛾𝑗𝑢

𝑙
𝜕(𝑏𝑗

𝑙 + ∑ 𝑤𝑘𝑗
𝑙 𝑎𝑘𝑢

𝑙−1
𝑘 + ∑ 𝑣𝑖𝑗

𝑙 𝑎𝑖,𝑢+1
𝑙

𝑖)

𝜕𝑣𝑖𝑗
𝑙

= 𝛾𝑗𝑢
𝑙 𝑎𝑖,𝑢+1

𝑙

(39)

The gradient of each weight can be calculated as:

21

{

𝜕ℎ

𝜕𝑤𝑘𝑗
𝑙 =∑

𝜕ℎ

𝜕𝑤𝑘𝑗𝑢
𝑙

𝑢

𝜕ℎ

𝜕𝑣𝑖𝑗
𝑙 =∑

𝜕ℎ

𝜕𝑣𝑖𝑗𝑢
𝑙

𝑢

𝜕ℎ

𝜕𝑏𝑗
𝑙 =∑

𝜕ℎ

𝜕𝑏𝑗𝑢
𝑙

𝑢

 (40)

2. Calculate Kalman gain.

 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
𝑇𝑆𝑡

−1 (41)

3. Update state estimate

 𝑥𝑡|�̂� = 𝑥𝑡|𝑡−1̂ + 𝐾𝑡�̃�𝑡 (42)

Where:

 �̃�𝑡 = 𝑧𝑡 − 𝐻𝑡𝑥𝑡|𝑡−1̂ (43)

This is the most important part in Kalman filter. It means that the bigger Kalman gain

is, the more trustworthy measurement value can be.

4. Update estimate covariance

 𝑃𝑡|𝑡 = 𝑃𝑡|𝑡 − 𝐾𝑡𝐻𝑡𝑃𝑡|𝑡 (44)

22

3. Related Work

This thesis is fundamentally a time series prediction system with big data stream. Time

series forecasting with streaming data plays an important role in many real applications.

However, real data is often accompanied with anomalies and changes, which can make the

learned models deviate from the underlying patterns of time series, especially in the context

of online learning mode. This difficulty can be reduced by using recurrent neural network,

[16] which has been proved effective in prediction problem. In [17] [18] and [19], artificial

neural network is used in different domains to solve time series prediction problem. All of

authors choose Backpropagation as their training method and it can achieve good predicted

results. [20] presents an accurate and reliable short-term load forecasting system model

which can be used to optimize power system operations, like the aim of this thesis, but the

difference is that it does not need to consider adaptivity and high timing requirements. In

[3], authors present a neuro-controller with adaptive deadzone compensation to solve the

problem of controlling an unknown SISO non-linear systems. The system is based on

recurrent neural network and it gets low tracking error, approximately 0.2. All the works

show that recurrent neural networks have been widely-used in many domains to solve time

series prediction problem. Researchers tried different methods to improve their own

network, and the common one is Backpropagation.

Deep learning is suitable for learning data with sophisticated and large-scale structure. This

is the biggest advantage that shallow neural network does not have. So, in future, it will be

applied to even larger-scale data, like big data in cloud or a big data stream. In [21], a deep

learning model predicts increase and decrease in the sales of a retail store. The predictive

accuracy varies between 75% to 86% with changes in the number of product attributes,

which proves a multi-layer neural network can be better than a shallow one. The following

two works aim at optimizing operations by predicting future states with deep neural

network, but they are both offline learning. In [22], a new deep learning approach for the

VM workload prediction in the cloud system is presented. The experimental results show

that the proposed prediction approach based on deep belief network composed of multi-

layer restricted Boltzmann machines can improve accuracy of the CPU utilization

prediction than other existing prediction approaches. In [23], traditional PID controller is

replaced with a deep learning controller. The deep learning controller is trained offline with

simulation data. Then remove the original PID controller, and use deep learning controller

to accomplish the functionalities PID can do. All in all, in some real applications which

has high accuracy requirements, a multi-layer neural network is always the best choice.

23

4. Research Method

Figure 12 is the process of research method that were followed in this thesis.

Figure 16 Research method

It includes totally 5 steps.

1. Problem formulation

This thesis process started by formulating problems. From the characteristics of data stream

and real-time control system, we can foresee some challenges and problems.

2. Related work

By reading different papers and researches about neural network, we can have the basic

knowledge and idea to model an artificial neural network.

3. Implementation

Not only a dynamic adaptive real-time control system process will be modeled, but also

two existing training algorithms will be implemented. And a new hybrid training algorithm

will be presented as well.

4. Methods validation

There are many uncertainties in a neural network. Different combinations may lead to

various consequences and problems. In this step, we mainly test and discard the options

which will probably bring very bad results. For example, we need to test if leaky RELU

function can solve dying RELU problem in a deep recurrent neural network. Another

important thing is to test if two existing algorithms and the proposed one work in such a

model.

5. Evaluation

In this step, we mainly choose the best one from several uncertainties options to construct

the final model and compare the performance among three different algorithms. The

indexes taken into consideration should be not only accuracy, but also speed and adaptivity,

since a real-time control system is a time-varying system with high timing requirements.

24

5. Training Algorithms Comparison

From the above, we can know that EKF is a second-order gradient descent algorithm.

Compared with traditional gradient-descent-based techniques like Backpropagation, it

has much faster convergence. For general gradient descent algorithm, the curvature of

error surface is different in different directions, so learning rate must be small enough to

keep stable when there is high curvature. However, if learning rate is very small, rate of

convergence will no doubt be slow with low curvature. So, one of the method is to

calculate second-order derivative to incorporate curvature information into gradient

descent process. That is why EKF can have both fast convergence and good performance.

However, everything has pros and cons. There is one disadvantage when using EKF.

Although EKF only needs one single step for each training example, faster convergence

leads to overfitting problem under some specific conditions, especially when training one

example for the first time, like following pictures (from the first period of first

experiment) show.

Figure 17 Kalman filter fitness

Figure 18 BPTT fitness

We can see that Kalman filter prediction result is highly dependent on information from

previous time steps. For example, the curve rises significantly at the beginning 30 data

25

points and rises slowly after 30 data points, but the feature neural network learned from

these 30 data points is only curve rising significantly, which is why if any big change

happens to system, there will be a fluctuation process to re-adapt. But BPTT does not

have this kind of problem. It is much smooth and can do greater job on turning part

because of slower convergence.

To solve this problem, we present a training algorithm to take the essence of

characteristics from EKF and BPTT. EKF can provide fast convergence and this is one

key point to take into consideration in a dynamic system because there is no much time

for each training example. Besides, accuracy is always one of concerns in neural network

modelling. All training steps are for future states prediction, so we cannot only

concentrate on current example’s accuracy. That is why we need BPTT to prevent

overfitting problem.

26

6. Proposed Training Method

6.1 Forward Pass

In this thesis, inputs are all from a real-time big data stream. Based on this assumption,

we choose sliding window to fill in inputs of deep recurrent neural network, because

sliding window can split a data stream into several parts and each part can be one

individual training example. In this way, it can produce a training example set for neural

network training. The advantage of using sliding window is that we do not need a real

storage to store all of history parts (training examples). Once the new arrival input is

received and used for training, then the new created part can be discarded, because

information has been recorded in each connection of neural network. This is how we deal

with data stream learning.

Due to the characteristics of recurrent neural network, even though each training example

is independent, two neighbor training examples still have hidden relationship, because

each arrival input is trained for several times, not only one. For example, in table 1,

inputs of window n are x(n), x(n+1), …, x(n+k), and inputs of window n+1 are x(n+1),

x(n+2), …, x(n+k+1). Inputs x(n+1), x(n+2), …, x(n+k) can be trained for 2 times.

Therefore, a sliding window can improve convergence.

Table 1 Sliding window

Window Input Output

1 x(1), x(2), …, x(k) o(k)

2 x(2), x(3), …, x(k+1) o(k+1)

3 x(3), x(4), …, x(k+2) o(k+2)

⋮ ⋮ ⋮
n x(n), x(n+1), …, x(n+k) o(n+k)

n+1 x(n+1), x(n+2), …, x(n+k+1) o(n+k+1)

Where k is the unfolding time from recurrent neural network and n is the number of

window. x(n) and y(n) are normalized inputs and outputs for neural network respectively.

Once one example is input from environment, it must be normalized before being sent

into neural network and output must be renormalized. So, there are 5 steps for each

training example.

Figure 19 Prediction steps

The following is normalization equation.

 normalization: x(n) =
𝑢(𝑛) − 𝑢𝑚𝑖𝑛
𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛

 (45)

27

Where u is the actual input from environment. 𝑢𝑚𝑎𝑥 is the pre-defined maximum

environment value based on domain knowledge and 𝑢𝑚𝑖𝑛 is the pre-defined minimum.

After getting normalized inputs, the next step is sending normalized inputs to the neural

network and calculating layer by layer till output layer, and finally renormalize the output

value.

 reverse normalization: y(n) = o(n)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) + 𝑦𝑚𝑖𝑛 (46)

Where y is the actual prediction output from neural network. 𝑦𝑚𝑎𝑥 is the pre-defined

maximum enviroment value from domain knowledge and 𝑦𝑚𝑖𝑛 is the pre-defined

minimum.

6.2 Hybrid Training Algorithm

As discussed in section 5, because of limitations of both training algorithms, a new

combined training algorithm is presented. When a new training example is input, the first

step is receiving weights from BPTT at previous time step and using new weights to

predict:

 output = ℎ𝑛(𝑊
𝐵𝑃𝑇𝑇) (47)

Then use weights from Kalman filter at previous time step to train with Kalman filter

again and BPTT sequentially. The overall process should be like:

 𝑊𝑡
𝐸𝐾𝐹 = 𝑓𝐸𝐾𝐹(𝑊𝑡−1

𝐸𝐾𝐹) (48)

 𝑊𝑡
𝐵𝑃𝑇𝑇 = 𝑓𝐵𝑃𝑇𝑇(𝑊𝑡

𝐸𝐾𝐹) (49)

Figure 20 Training algorithm

The main idea behind this design is to make full use of Kalman filter's fast convergence

and BPTT's stability. In this way, weights will still highly depend on Kalman filter’s

estimate, but it will not be influenced by overfitting problems caused by Kalman filter

because of BPTT’s correction. On the other hand, BPTT can also get much better initial

weights to train than the original one, so to some extent, it can not only assist Kalman

filter fitness to be smooth, but also make fitness better in stationary phase. One thing to

mention is that learning rate in BPTT should be small, or the fitness will deviate much

and slow convergence down. It cannot be too small as well, or it cannot change too much

and this is just waste of time.

28

From the theory point, the aim of hybrid mode is to take essence from both algorithms,

but Kalman filter uses state and covariance at previous time step to predict state and

covariance at current time step, which means both two variables are one-to-one and we

cannot just update states(weights) by BPTT and ignore covariance, or the result will be

completely wrong because of distribution calculation. So, we need to draw weights alone,

then update by BPTT. In this way, both variables can be kept for next Kalman filter

training and they will not be influenced by extra BPTT training.

The whole procedure is like two processes in embedded system. The first one is

responsible for Kalman Filter algorithm. It not only updates weights every time unit, but

also stores them and sends to BPTT calculation task. The other process receives weights

from primary process and updates weights by BPTT, then predicts future states. So, if

there is a multi-core processor, this algorithm can run on two different processes to save

time (prediction part).

Figure 21 Training algorithm in multi-core processor

29

7. Evaluation

To compare the performance of two existent training algorithms and new proposed one,

several experiments were made. Three aspects are taken into consideration, rate of

convergence, adaptivity, and accuracy. Rate of convergence means how much time the

algorithm needs to train neural network to get a closer optimum, and adaptivity means

once some change happens whether the neural network can adjust itself and how fast it

can be. Since we can only get one number from each group of prediction output and

desired output, we use relative error to define accuracy relationship between prediction

result and desired result. In equation 48, y’ is the prediction output and 𝑦𝑑 is the desired

output of each example.

 φ = 1 − |
𝑦 , − 𝑦𝑑

𝑦𝑑
| (50)

7.1 Static System

In this section, we mainly investigate performance of convergence rate and accuracy in a

static system and we totally prepared two experiments for it.

7.1.1 System Identification

 Identify a non-linear static system, from [28], described by:

 y(t) = 𝑢(𝑡)3 +
𝑦(𝑡 − 1)𝑦(𝑡 − 2)[𝑦(𝑡 − 1) − 1]

1 + 𝑦(𝑡 − 1)2
 (51)

And the input is:

 u(t) = 0.5sin (4πt) (52)

 The other non-linear static system, from [29], is described by:

y(t) = 0.3y(t − 1) + 0.6y(t − 2) + 𝑢(𝑡)3 + 0.3𝑢(𝑡)2

− 0.4u(t)
(53)

And the input is:

 u(t) = sin (
2𝜋𝑡

250
) (54)

30

7.1.2 First Experiment

7.1.2.1 Existent Algorithms

Figure 22 BPTT and Kalman filter result in static system

The picture above shows the result of BPTT and Kalman filter with beginning 4000 data

points (totally 8 periods). The red line is desired stream and the blue is prediction result.

From the picture, they both have their own advantages when training neural network. As

discussed before, BPTT does better job than Kalman filter when fitting turning part

because of overfitting problem. But in other cases, Kalman filter seems better. Since the

result is hard to recognize which is the best choice, the following picture gives some

more detailed accuracy information of two algorithms. All points in the picture are

average accuracy in each period and it includes totally 16000 data points (32 periods).

Figure 23 Accuracy information of BPTT and Kalman filter in static system

31

The accuracy information apparently shows Kalman filter has much faster convergence

than BPTT, especially in the first period. Average accuracy of Kalman filter is 98.10%,

2.04% more than BPTT’s, which means previous training examples have been learned

and memorized quickly when using Kalman filter so that it can recognize examples with

same features and finally, it can get approximately 99.65% accuracy after 32 periods, but

BPTT cannot make it so fast. BPTT optimizes very slowly after 10 periods, increases by

only 0.002% per iteration and gets 99.29% after 32 periods, but Kalman keeps rising

much throughout. That is the benefit of second-order derivative calculation. All the

weights share the same learning rate in BPTT, but Kalman filter does not.

7.1.2.2 Proposed Algorithm

Figure 24 Proposed algorithm result in static system

Figure 25 Accuracy information of proposed algorithm in static system

32

Based on the result from previous experiments, we can know both existent algorithms

have their own strengths. Figure 24 and 25 are result and accuracy information of

proposed algorithm respectively. The result shows that the new one keeps most

characteristics from Kalman filter and rate of convergence is almost the same as Kalman

filter, but it also makes some small improvements based on BPTT, which can be found

from not only accuracy information, but also details in figure 24. Compared with pure

Kalman filter, even though at the beginning, first period accuracy is only improved by

0.18%, second period increases by 0.55% and final accuracy rises from 99.65% to

99.82%, and the profit it gets from BPTT is the stable adjustment under some special

circumstances, like turning part at the beginning periods.

7.1.3 Second Experiment

Figure 26 Result of second experiment in static system

Figure 27 Accuracy information of second experiment in static system

33

In this experiment, we chose a bad initial weight set to show how big the difference of

convergence rate among three algorithms can be. First, it is obvious that all three curves

decrease in the beginning. The reason it happens in Kalman filter is that Kalman filter

changes each weight too much so that new weights cannot fit history training examples.

By contrast, BPTT curve drops back to 83.07% in 3rd period, which means a not proper

learning rate may fit only some weights in 2nd period. Maybe average accuracy in this

period is better, but that is just because of average value’s role. Second, algorithms rise

greatly first after the mentioned drop, then they enter a stationary phase, but Kalman filter

and Kalman-filter-based algorithms continuously increase and BPTT experiences some

fluctuations. That means once BPTT enters saturation region, the shared learning rate will

be a drag. Third, we can also grab from the result that BPTT does not do a good job in

this system, even after 4000 data points, it cannot get an approximate optimum. A proper

setting of learning rate is important for pure BPTT, but it is hard to find such a number

for all weights. The deeper neural network is, the more weights there are and the harder

to find the proper setting.

7.2 Time-varying System

Since this thesis is to model a dynamic adaptive real-time control system process, in this

section, we not only focus on the performance of convergence rate and accuracy, but also

concentrate on the adaptivity of different training algorithms in a time-varying system.

We changed some parameters of system after several periods and kept the same original

weight set so that weights will not influence the result.

7.2.1 System Identification

 Now, the first non-linear system is described by:

{

 y(t) = 𝑢(𝑡)3 +

𝑦(𝑡 − 1)𝑦(𝑡 − 2)[𝑦(𝑡 − 1) − 1]

1 + 𝑦(𝑡 − 1)2
, 𝑡 < 8000

y(t) = (1.5 ∗ 𝑢(𝑡)3 +
𝑦(𝑡 − 1)𝑦(𝑡 − 2)[𝑦(𝑡 − 1) − 1]

1 + 𝑦(𝑡 − 1)2
, 𝑡 > 8000

 (55)

Where the input is:

 {
u(t) = 0.5sin(4πt), t < 8000
u(t) = 0.5 sin(2πt) , t > 8000

 (56)

 The second non-linear system is:

 {
y(t) = 0.3y(t − 1) + 0.6y(t − 2) + 𝑢(𝑡)3 + 0.3𝑢(𝑡)2 − 0.4u(t), 𝑡 < 4000

y(t) = 0.3y(t − 1) + 0.6y(t − 2) + 1.5𝑢(𝑡)3 + 0.5𝑢(𝑡)2 − u(t), 𝑡 > 4000
 (57)

Where the input is:

34

 u(t) = sin (
2𝜋𝑡

250
) (58)

7.2.2 First Experiment

7.2.1.1 Existent Algorithms

Figure 28 BPTT and Kalman filter result in time-varying system

Figure 29 Accuracy information of BPTT and Kalman filter in time-varying system

The pictures above are result and accuracy information in a time-varying system with

BPTT and Kalman filter. The first figure is the result when change happens and the

second one is overall accuracy information. There is a drop in 1st period after change

happens. Accuracy decreases from 99.56% to 99.19%. But then accuracy does not drop

anymore when using Kalman filter, which means neural network starts adapting to

35

changes. On the other hand, BPTT still needs one more period to train and re-adapt. From

the number, we can also see that BPTT’s average accuracy drops by 0.96%, which is

much bigger than the drop in Kalman filter, about 0.37%, then drops more, about 0.16%.

The reason of it is the rate of convergence. Kalman filter can change each dimension of

weights fast and individually.

7.2.2.2 Proposed Algorithm

Figure 30 Proposed algorithm result in time-varying system

Since the new one is a Kalman-filter-based algorithm improved by BPTT, so figure 31

shows the comparison of accuracy information between presented algorithm and pure

Kalman filter.

Figure 31 Accuracy information of proposed algorithm in time-varying system

36

After change happens, the new presented algorithm rises faster than pure Kalman filter

and the difference is gradually enlarged because of BPTT’s role. This also happens at the

beginning, which shows that combination of two existent algorithms makes double

efforts to both re-adaption and optimization. From this picture, we can know that the

average difference is about 0.2%. For real-time control systems and neural networks

which require high accuracy, it is a great improvement.

7.2.3 Second Experiment

Figure 32 Result of second experiment in time-varying system

Figure 33 Accuracy information of second experiment in time-varying system

The accuracy information shows that the change leaves little influence on Kalman filter

and proposed algorithm. Especially for the new one, the accuracy just decreases by

0.11%. This proves Kalman filter’s fast convergence again. Compared with two Kalman-

filter-based algorithms, BPTT does not give good enough results in this experiment. That

37

means once a bad initial weights set are given, using BPTT always means a long time to

get optimum weights set. That is why in the proposed algorithm, we need EKF first, and

give new updated weights to BPTT task secondly.

7.3 Discussion

In static systems, when initial weights set is not bad for training, differences among three

algorithms are not big. All accuracy curves rise smoothly, but BPTT almost stop rising

because of shared learning rate. Benefiting from second-order gradient calculation,

Kalman filter does better on this point, especially when given bad initial weights set.

After the drop after the first period, Kalman filter can quickly find an approximate

optimum set, but BPTT seems very slow.

In time-varying systems, because of shared learning rate, change makes more effect on

BPTT fitness so that BPTT accuracy drops much. On the other side, due to Kalman

filter’s fast convergence, neural network has good adaptivity to face challenges from

system requirements or environments. However, under some special circumstances, we

can still find BPTT has its own advantages from both kinds of systems, like fitting ability

in turning part, which is the reason we need it to overcome overfitting problem in new

proposed training algorithm.

To sum up, Kalman filter and Kalman-filter-based algorithm is the better choice, but the

new proposed one should give the credit to improvement from BPTT as well. Additional

BPTT adjustment is like combustion adjuvant. Kalman filter plays more important role in

training, and BPTT is responsible for solving some small and infrequent problems or

improving more.

38

8. Conclusion

There are not many prediction models for control systems now, but, there can be some

changes in a system with time going and environment changing. It is not always possible

to let them out of service once the system need to be changed. At this moment, a dynamic

adaptive process model with prediction functionality can help a lot.

In this thesis work, we propose a process model with new Kalman-filter-based training

algorithm for prediction in dynamic control systems. This model is fundamentally an

artificial recurrent neural network and it takes the essence from two training algorithms,

Kalman filter and Backpropagation through time because of complementary advantages.

Compared with traditional feedforward neural network, a network with recurrent layers

can store history data in these additional layers. New presented training algorithm is a

combination of Kalman filter and BPTT. Kalman filter brings fast convergence but its

instability may cause some unpredictable problems, and BPTT can help to prevent them

and improve more.

The results of experiments show that new algorithm improves original two algorithms. It

inherits most characteristics, especially fast convergence from Kalman filter and then

applies BPTT to make small adjustments to avoid some problems caused by Kalman

filter and make the model more accurate and more stable. Even if there is any change, the

model also has good adaptivity to cope with coming challenges.

39

9. Future Work

Because of complexity of recurrent neural network and limitation of time, not all

parameter combinations have been tested, including layer number of neural network,

neuron number in each layer, learning rate and noise P and Q in Kalman filter. There is

also some hidden relationship between two of them, like the smaller layer number is, the

bigger unfolding time should be, but there is no clear definition now. This kind of

exploration is time-consuming and huge.

We used MATLAB to implement this model, not C language or assembly language, so

we did not test how much time it needs in real applications. In MATLAB, each training

example needs 24ms per iteration. So, if it is transferred to other language, it should be

faster.

This thesis only focuses on the prediction part in an adaptive control system. After

getting an estimated result, the result should be used in another model to suggest creating

new approximate inputs for next time step. In this way, created inputs can be more

promising than those only from outside.

40

Reference

[1] V. Sigarev, T. Kuzima, A. Krasilnikov, "Real-time control system for a DC motor". NW
Russia Young Researchers in Electrical and Electronic Engineering Conference
(EIConRusNW). IEEE, 2016

[2] F. A. Qureshi, V. Spinu, K. Wijnands et al., "A real-time control system structure for
industrial power amplifiers". American Control Conference (ACC), 2013. IEEE, 2013

[3] J. H. Perez-Cruz, I. Chairez, J. J. Rubio et al., "Identification and control of class of non-
linear systems with non-symmetric deadzone using recurrent neural networks", IET
Control Theory & Applications (Volume: 8, Issue: 3, Feb.13 2014). IEEE, 2014

[4] M. Aamir, "On Replacing PID Controller with ANN Controller for DC Motor Position
Control". International Journal of Research Studies in Computing, Consortia
Academia Publishing, vol. 2 no. 1, pp. 21-29, April 2013

[5] B. Wilson, "The Machine Learning Dictionary". 2012
[6] Beyer, Mark, "Gartner Says Solving 'Big Data' Challenge Involves More Than Just

Managing Volumes of Data". Retrieved 13 July 2011.
[7] G. A. Lakshen, S. Vraneš, V. Janev, "Big Data and Quality: A Literature Review".

Telecommunications Forum (TELFOR), 2016 24th. IEEE,2017
[8] R. S. Nowakowski, "Stable neuron numbers from cradle to grave". Proceedings of the

National Academy of Sciences. 103 (33): 12219–12220
[9] "neuron". Oxford English Dictionary (3rd ed.). Oxford University Press. September

2005.
[10] V. Nair, G. E. Hinton, "Rectified Linear Units Improve Restricted Boltzmann Machines".

Proceedings of the 27th International Conference on Machine Learning (ICML-10),
June 21-24, 2010, Haifa, Israel

[11] D. Brezak, T. Break, D. Majetic et al., "A comparison of feed-forward and recurrent
neural networks in time series forecasting". Computational Intelligence for Financial
Engineering & Economics (CIFEr), 2012 IEEE Conference. IEEE, 2012

[12] J. L. Elman, "Finding Structure in Time". Cognitive Science. 14 (2): 179–211. 1990
[13] L. Deng, D. Yu, "Deep Learning: Methods and Applications". Foundations and Trends

in Signal Processing. 7 (3-4): 1–199. 2014
[14] L. Hungyi, "Lecture I: Introduction of Deep Learning". Retrieved from

http://people.tamu.edu/~gengxbtamu/pdf/Deep_Learning_Tutorial_Hungyi_Lee.pd
f

[15] M. Hermans, B. Schrauwen, "Training and Analyzing Deep Recurrent Neural
Networks". Advances in Neural Information Processing Systems 26

[16] T. Guo, Z. Xu, X. Yao et al., "Robust Online Time Series Prediction with Recurrent
Neural Networks" Data Science and Advanced Analytics (DSAA), 2016 IEEE
International Conference on. IEEE, 2016

[17] D. X. Niu, H. Shi, J. Q. Li et al., "Research on short-term power load time series
forecasting model based on BP neural network" Advanced Computer Control (ICACC),
2010 2nd International Conference. IEEE, 2010

41

[18] D. A. Kumar, S. Murugan, "Performance analysis of Indian stock market index using
neural network time series model". Pattern Recognition, Informatics and Mobile
Engineering (PRIME), 2013 International Conference. IEEE, 2013

[19] S. H. Yu, J. Y. Ou, "Forecasting Model of Agricultural Products Prices in Wholesale
Markets Based on Combined BP Neural Network -Time Series Model". Information
Management, Innovation Management and Industrial Engineering, 2009
International Conference. IEEE, 2009

[20] N. Siddarameshwara, A. Yelamali, K. Byahatti, "Electricity Short Term Load
Forecasting Using Elman Recurrent Neural Network". Advances in Recent
Technologies in Communication and Computing (ARTCom), 2010 International
Conference. IEEE, 2010

[21] Y. Kaneko, K. Yada, "A Deep Learning Approach for the Prediction of Retail Store
Sales". Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference.
IEEE, 2017

[22] F. Qiu, B. Zhang, J, Guo, "A deep learning approach for VM workload prediction in the
cloud". Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), 2016 17th IEEE/ACIS International
Conference on. IEEE, 2016

[23] K. Cheon, J. Kim, M. Hamadache et al., "On Replacing PID Controller with Deep
Learning Controller for DC Motor System". Journal of Automation and Control
Engineering vol. 3, no. 6, pp. 452-456

[24] J. Mazumdar, R. G. Harley, "Recurrent Neural Networks Trained with
Backpropagation Through Time Algorithm to Estimate Nonlinear Load Harmonic
Currents". IEEE Transactions on Industrial Electronics (Volume: 55, Issue: 9, Sept.
2008). IEEE, 2008

[25] R. Faragher, "Understanding the Basis of the Kalman Filter Via a Simple and Intuitive
Derivation". IEEE SIGNAL PROCESSING MAGAZINE [128] SEPTEMBER 2012. IEEE, 2012

[26] P. Trebatický, J. Pospíchal, "Neural Network Training with Extended Kalman Filter
Using Graphics Processing Unit". ICANN 2008, Part II, LNCS 5164, pp. 198–207, 2008

[27] S. Singhal, W Lance, "Training multilayer perceptrons with the extended Kalman
algorithm", Advances in neural information processing systems 1 Pages 133-140

[28] L. Xingyu, Y. Chunyan, Y. Bangyan et al., "A Hybrid Recurrent Neural Network for
Machining Process Modeling". ISNN 2009, Part I, LNCS 5551, pp. 635-642. 2009.

[29] M.C. Nechyba, X. Yangsheng, "Neural network approach to control system
identification with variable activation functions". Intelligent Control, 1994.,
Proceedings of the 1994 IEEE International Symposium. IEEE, 2002

