mdh.sePublications
Change search
Refine search result
1234567 1 - 50 of 364
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Yan, Jinyue
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Dept Chem Engn, Stockholm, Sweden..
    Zhang, Z.
    Chongqing University, Chongqing, China.
    Carbon Capture, Utilization and Storage (CCUS)2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 235, p. 1289-1299Article in journal (Refereed)
  • 2.
    Zhang, C.
    et al.
    KTH, Stockholm, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH, Stockholm, Sweden.
    Liu, C.
    Swedish Road and Transport Research Institute, Stockholm, Sweden.
    Wang, K.
    Beijing Institute of Technology, Beijing, 100081, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH, Stockholm, Sweden.
    Crowdfunding preferences for a sustainable milk product with integrated photovoltaic water pumping system in China2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 255, article id 113694Article in journal (Refereed)
    Abstract [en]

    This paper studies the role of potential investors in financing renewable energy systems—specifically, relating to crowdfunding as a financing mechanism, with the enhancement of internet and social-media tools. The research question in this study is whether crowdfunding with a novel socio-technical product reward program attracts potential customers to a more sustainable milk product with a specific integrated photovoltaic water pumping (PVWP) system. The particular case study we empirically investigated is product reward crowdfunding in dairy milk production in China. The milk production chain was supplied by PVWP system integration, which generated solar energy both for feed production for dairy cows and for the operation of dairy farms. 48 semi-structured in-depth interviews were conducted between the research team and customers in order to perform qualitative analyses of the determinants of customers’ milk purchase behaviors. In addition, 357 online surveys were collected for quantitative analysis. Binary and ordered probit regressions were employed to use survey date to systematically estimate purchase intention and willingness-to-pay for sustainable milk. Customer behaviors, environmental consciousness, and individual socio-demographic factors were investigated as potential explanatory variables. Over 82% of the survey participants showed intentions to purchase the sustainable milk with the PVWP system. In the survey and interview samples, results showed that milk quality, nutrition improvement, emissions reduction, and environmental benefits attributed to the integrated PVWP system were the major factors considered by interviewees who showed intentions to purchase the crowdfunded dairy milk. Regression model results suggested that potential customers with higher income levels, and those of parenting age, and those with young children or planning to have children, had a higher willingness-to-pay than other customers for the crowdfunded sustainable dairy milk. The familiarity with and popularity of online shopping and pre-sale purchases in China made customers more open to and proactive towards pre-pay and crowdfunding mechanisms. This article evaluated key factors which may influence potential customers for crowdfunding, and used a discrete choice model to estimate customers’ willingness-to-pay for reward-based projects. These results could help producers of sustainable milk products to identify potential target groups in China and estimate market demand. This exploratory study could provide a framework with both quantitative and qualitative assessment of crowdfunding for renewable energy systems in a national or international context. 

  • 3.
    Zhang, H.
    et al.
    University of Waterloo, Canada.
    Li, X.
    University of Waterloo, Canada.
    Liu, X.
    University of Waterloo, Canada.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 241, p. 483-490Article in journal (Refereed)
    Abstract [en]

    Fuel cell plug-in hybrid electric vehicles (FC-PHEVs) can have extended range while utilizing cheap grid electricity, but has poor durability of onboard fuel cells due to dynamic loading. In this study, fuel cell durability is enhanced significantly for a novel configuration of FC-PHEVs with three fuel cell stacks through strategic power management by making each fuel cell stack work only at a fixed operating point (i.e., constant output power) and by shortening its active time (operation) via on-off switching control. A hysteresis control strategy of power management is designed to make the active time evenly distributed over the three fuel cell stacks and to reduce the number of on-off switching. The results indicate that the durability of the onboard fuel cells can be increased 11.8, 4.8 and 6.9 times, respectively, for an urban, highway and a combined urban-highway driving cycle. This enhanced fuel cell durability is derived from the fact that the average power demand of real-time driving cycles is only a fraction of the maximum power that FC-PHEVs could provide, and substantially increased durability can be used to reduce the over-design, hence the cost, of fuel cells. 

  • 4.
    Mancuso, Martin Vincent
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Evaluation of Grid-Connected Micro-Grid Operational Strategies2019Conference paper (Refereed)
    Abstract [en]

    This study investigates the operational performances of a grid-connected microgrid with integrated solar photovoltaic and battery energy storage. The study is based upon the techno-economic specifications and theoretical performance of the distributed energy resource and storage systems, as well as on measured consumer load data and electrical utility retail and distribution data for representative residential and commercial loads for the city of Västerås, Sweden. The open-source Matlab®-based simulation tool, OptiCE, is used for performing simulations and optimization. To support the attainment of one of the objectives, peak shaving of the consumer load, a battery operational strategy algorithm has been developed to balance peak shaving and PV self-consumption. Comparisons among three types of battery, lead-acid, lithium-ion and vanadium-redox flow, are also performed. A 117 kW p photovoltaic system paired with a lithium-ion battery of 41.1 kWh capacity is the optimal solution found for the considered commercial load. The calculated battery capacity represents the best trade-off for the set multi-objective optimization problem. The simulation of this system predicts the possibility to shave the customer load profile peaks up to 20% for the month of April. The corresponding self-consumption ratio is 88%. Differences in the relationship between the load profiles and the system performance have been qualitatively noted. Furthermore, the simulation results for lead-acid, lithium-ion and vanadium-redox flow battery systems reveal that lithium-ion batteries delivers the best trade-off between total annualized cost and peak shaving performance for both residential and commercial applications.

  • 5.
    Niu, Z.
    et al.
    Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China.
    Yu, J.
    Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China.
    Cui, X.
    Department of Chemical Engineering and Technology/Energy Processes, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden.
    Yang, Xiaohu
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Department of Chemical Engineering and Technology/Energy Processes, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden; Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China.
    Sun, Y.
    Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; Department of Chemical Engineering and Technology/Energy Processes, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden.
    Experimental investigations on the thermal energy storage performance of shell and tube unit with composite phase change materials2019In: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, p. 4889-4896Conference paper (Refereed)
    Abstract [en]

    This work presented experimental investigations on the thermal energy storage performance of the shell and tube unit with composite phase change materials (PCM). A cylindrical heat storage tank filled with open-cell copper foam was proposed and its melting process characteristics were studied. A designed test system was established to record the PCM real-time temperature data. The results showed that, compared with traditional smooth-tube phase-change heat exchangers, the composite PCM unit accelerated the bottom paraffin melting. The temperature disparity among different height reduced, which resulted in better internal temperature uniformity. Due to the expanded heat transfer area, improved heat transfer coefficient and weakened natural convection, the bottom phase-change materials in the composite-PCM heat-storage unit melt faster. 

  • 6.
    Salman, Chaudhary Awais
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Schwede, Sebastian
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH.
    Identification of thermochemical pathways for the energy and nutrient recovery from digested sludge in wastewater treatment plants2019In: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, p. 1317-1322Conference paper (Refereed)
    Abstract [en]

    There are several restrictions and limitations on the emissions and disposal of materials and pollutants related to wastewater treatment plants (WWTPs) emphasizing improvement of current processes and development of new methods. Process integration is one way to use all fractions of waste for improved efficiency. WWTPs produces sludge which is usually anaerobically digested to produce biogas and a byproduct called digestate. Digestate is an organic material that contains macro and micronutrients such as nitrogen, phosphorous, and potassium and also contains heavy metals. Digestate is mainly used for agricultural applications because of the presence of nutrients. However, digestate also contains energy in the form of carbon and hydrogen which can be harnessed through various processes and integrated with nitrogen recovery process. This study aims to recover the energy and nutrients from digestate through thermochemical treatment processes. Combustion, pyrolysis, and gasification are assessed and compared in this work. An ammonia stripping method is assumed to recover nitrogen from digestate. The thermochemical processes are heat integrated with ammonia stripping through modeling and simulation. Results show that almost half of the energy present in digested sludge is required for its drying. Moreover, nitrogen recovery also requires much energy. The combustion and gasification of digested sludge give better results than pyrolysis. The heat integration becomes feasible when the auxiliary biogas is also burned along with products from the thermochemical treatment of sludge.

  • 7. Tan, Y.
    et al.
    Nookuea, Worrada
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, China.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Impacts of thermos-physical properties on plate-fin multi-stream heat exchanger design in cryogenic process for CO2 capture2019In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 149, p. 1445-1453Article in journal (Refereed)
    Abstract [en]

    Oxy-fuel combustion is one of the most promising technologies for CO2 capture for power plants. In oxy-fuel combustion plants, cryogenic process can be applied for CO2 purification because the main impurities in flue gas are non-condensable gases. The multi-stream plate-fin heat exchanger is one of the most important components in the CO2 cryogenic system. In-depth understanding of the impacts of property on the heat exchanger is of importance for appropriate design. In order to investigate the impacts of properties on sizing the heat exchanger and to further identify the key properties to be prioritized for the property model development, this paper presented the design procedure for the plate-fin multi-stream heat exchanger for the CO2 cryogenic process. Sensitivity study was conducted to analyze the impacts of thermos-physical properties including density, viscosity, heat capacity and thermal conductivity. The results show that thermal conductivity has the most significant impact and hence, developing a more accurate thermal conductivity model is more important for the heat exchanger design. In addition, even though viscosity has less significant impact compared to other properties, the larger deviation range of current viscosity models may lead to higher uncertainties in volume design and annual capital cost of heat exchanger. 

  • 8.
    Yan, Jinyue
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Chemical Science and Engineering, Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Yang, H.
    Department of Building Services Engineering, The Hong Kong Polytechnic University.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Chen, X.
    Department of Building Services Engineering, The Hong Kong Polytechnic University.
    Innovative solutions for energy transitions: Proceedings of the 10th International Conference on Applied Energy (ICAE2018)2019In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 158, p. 1-2Article in journal (Other academic)
  • 9.
    Yan, J.
    et al.
    North China Electric Power University, Beijing, 102206, China.
    Lai, F.
    North China Electric Power University, Beijing, 102206, China.
    Liu, Y.
    North China Electric Power University, Beijing, 102206, China.
    Yu, D. C.
    University of Wisconsin – Milwaukee, United States.
    Yi, W.
    Energy Research Institute of National Development and Reform Commission, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH-Royal Institute of Technology, Sweden.
    Multi-stage transport and logistic optimization for the mobilized and distributed battery2019In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 196, p. 261-276Article in journal (Refereed)
    Abstract [en]

    High share of variable renewable energy is challenging to the traditional power system technically and economically. This calls for a significant increase to the system flexibility, which might result in the costs associated with energy storage and costly upgrades to the traditional transmission and distribution system. This paper presents a multi-stage battery transportation and logistics optimization method to increase the renewable energy consumptions, economics, and mobilities of the battery utilization. A new approach is proposed in which the batteries are charged in the renewable power plants and transported back and forth by railways between the renewable power plants and cities. Based on the forecasts of battery supplies/demands, multiple optimization stages (full train transport and carpooling) are designed by the branch-and-bound algorithm and genetic algorithm respectively. The proposed battery transportation and logistics concept and model are performed using the Beijing-Tianjin-Hebei region in China as an example. The results show that the levelized cost of energy of the battery transportation and logistics model is $0.045/kWh averagely. Also, by the use of mobilized batteries, the proposed battery transportation and logistics model increases the system flexibilities and renewable energy deliveries to the end users without the reinforcement of transmission and distribution system and any constraint from a highly penetrated power system.

  • 10.
    Shang, N.
    et al.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Lin, Y.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Ding, Y.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Ye, C.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Nodal market power assessment of flexible demand resources2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 235, p. 564-577Article in journal (Refereed)
    Abstract [en]

    With the incorporation of higher shares of intermittent renewable energies (RES), more flexible resources are required in power systems to keep load balance. Under some extreme circumstances, the flexible demand resources (FDRs) may have the potential to dominate and obtain excess benefits, preventing other FDRs from participating in the electricity markets. Therefore, it is of great significance to identify the key FDR market power locations and implement some corresponding regulations. However, the relevant researches in power systems focused on the supply side, rather than the demand side. In this paper, a novel nodal market power analysis method is proposed to evaluate the potential influence of FDRs on electricity markets. Firstly, a multi-state model is established to present the multiple power system operation states including the random failures of system components. Then, the nodal market power assessment model is established under each specific state and new indices are proposed to evaluate the nodal market power of FDRs quantitatively. Furthermore, the key FDR nodes in demand side with stronger power in capturing excess revenue are identified. The 24-bus IEEE Reliability Test System is modified to demonstrate the feasibility of the proposed method. The numerical results of the proposed method are capable to display the existence of market power in demand side, and provide some valuable guidance for classification and operation of electricity markets.

  • 11.
    Shang, N.
    et al.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Lin, Y.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Ding, Y.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Ye, C.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Nodal market power assessment of flexible demand resources2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 235, p. 564-577Article in journal (Refereed)
    Abstract [en]

    With the incorporation of higher shares of intermittent renewable energies (RES), more flexible resources are required in power systems to keep load balance. Under some extreme circumstances, the flexible demand resources (FDRs) may have the potential to dominate and obtain excess benefits, preventing other FDRs from participating in the electricity markets. Therefore, it is of great significance to identify the key FDR market power locations and implement some corresponding regulations. However, the relevant researches in power systems focused on the supply side, rather than the demand side. In this paper, a novel nodal market power analysis method is proposed to evaluate the potential influence of FDRs on electricity markets. Firstly, a multi-state model is established to present the multiple power system operation states including the random failures of system components. Then, the nodal market power assessment model is established under each specific state and new indices are proposed to evaluate the nodal market power of FDRs quantitatively. Furthermore, the key FDR nodes in demand side with stronger power in capturing excess revenue are identified. The 24-bus IEEE Reliability Test System is modified to demonstrate the feasibility of the proposed method. The numerical results of the proposed method are capable to display the existence of market power in demand side, and provide some valuable guidance for classification and operation of electricity markets. 

  • 12.
    Liang, X.
    et al.
    China United Northwest Institute for Engineering Design and Research Co., Ltd, Xi'an, China.
    Tian, W.
    China United Northwest Institute for Engineering Design and Research Co., Ltd, Xi'an, China.
    Li, R.
    Shaanxi Energy environmental and Building Energy Conservation Engineering Technology Research Center, Xi'an, China.
    Niu, Z.
    Shaanxi Energy environmental and Building Energy Conservation Engineering Technology Research Center, Xi'an, China.
    Yang, X.
    Shaanxi Energy environmental and Building Energy Conservation Engineering Technology Research Center, Xi'an, China.
    Meng, X.
    Shaanxi Energy environmental and Building Energy Conservation Engineering Technology Research Center, Xi'an, China.
    Jin, L.
    Shaanxi Energy environmental and Building Energy Conservation Engineering Technology Research Center, Xi'an, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH.
    Numerical investigations on outdoor thermal comfort for built environment: Case study of a Northwest campus in China2019In: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, p. 6557-6563Conference paper (Refereed)
    Abstract [en]

    Outdoor thermal comfort has been receiving more and more attentions due to the increased demand of outdoor activities during last decades. People require good thermal comfort when they are exposed to the outdoor thermal environment. However, the natural environment is severely suffering from the pollution of air, water as well as the extremely hot weather. Therefore, construction of ecological living environment is of great importance. To evaluate and improve the built environment, a campus area located in Northwest China was selected. Numerical simulations based on the software ENVI-met V4.0 were conducted and the effect of growing plants upon the outdoor thermal comfort was analyzed. Numerical results were compared using different thermal Indexes: Physiological Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI). Results demonstrated that UTCI gave a lower prediction than that of PET and was more suitable for evaluating the outdoor thermal comfort. Growing trees can significantly reduce the uncomfortable hours during hot summer but the improvement will reach the limitation after growing amount of trees.

  • 13.
    Wang, S.
    et al.
    Zhejiang University, Hangzhou, China.
    Shao, C.
    Zhejiang University, Hangzhou, China.
    Ding, Y.
    Zhejiang University, Hangzhou, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    Operational reliability of multi-energy customers considering service-based self-scheduling2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 254, article id 113531Article in journal (Refereed)
    Abstract [en]

    The developments of energy storage and substitution techniques have made it possible for customers to self-schedule their energy consumption behaviors, to better satisfy their demands in response to uncertain supply conditions. The interdependency of multiple energies, the chronological characteristics, and uncertainties in the self-scheduling context bring about additional complexities to secure the reliable energy requirements of multi-energy customers. As a necessary and challenging task, the operational reliability of multi-energy customers is tackled in this paper. Considering that the consumed energies eventually come down to the energy-related services, the self-scheduling of multi-energy customers is implemented from the perspective of specific energy-related services rather than energy carriers. Firstly, an optimal self-scheduling model for multi-energy customers is developed with the consideration of chronological service curtailment, service shifting and possible failures during service shifting. In the optimal self-scheduling model, the costs of service curtailment and shifting are formulated based on the proposed evaluation method. The time-sequential Monte Carlo simulation approach is applied to model the chronological volatilities of multi-energy demands over the entire study period, embedded with a scenario reduction technique to reduce the computational efforts. Taking full account of the possible scenarios, the quantitative reliability indices of the multi-energy customers can be obtained. The results in test cases demonstrate that the expected energy not supplied of the multi-energy customer drops significantly by 56.32% with the self-scheduling strategy. It can be also concluded that, the self-scheduling and its inherent uncertainties do have significant impacts on the operational reliability of the multi-energy customer.

  • 14.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    Wästhage, Louise
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Nookuea, Worrada
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Tan, Y.
    Royal Institute of Technology, Stockholm, Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems2019In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 177, p. 782-795Article in journal (Refereed)
    Abstract [en]

    Considering the targets of Thailand in terms of renewable energy exploitation and decarbonization of the shrimp farming sector, this work evaluates several scenarios for optimal integration of hybrid renewable energy systems into a representative shrimp farm. In particular, floating and floating-tracking PV systems are considered as alternatives for the exploitation of solar energy to meet the shrimp farm electricity demand. By developing a dynamic techno-economic simulation and optimization model, the following renewable energy systems have been evaluated: PV and wind based hybrid energy systems, off-grid and on-grid PV based hybrid energy systems, ground mounted and floating PV based hybrid energy systems, and floating and floating-tracking PV based hybrid energy systems. From a water-energy nexus viewpoint, floating PV systems have shown significant impacts on the reduction of evaporation losses, even if the energy savings for water pumping are moderate due to the low hydraulic head. Nevertheless, the study on the synergies between water for food and power production has highlighted that the integration of floating PV represents a key solution for reducing the environmental impacts of shrimp farming. For the selected location, the results have shown that PV systems represent the best renewable solution to be integrated into a hybrid energy system due to the abundance of solar energy resources as compared to the moderate wind resources. The integration of PV systems in off-grid configurations allows to reach high renewable reliabilities up to 40% by reducing the levelized cost of electricity. Higher renewable reliabilities can only be achieved by integrating energy storage solutions but leading to higher levelized cost of electricity. Although the floating-tracking PV systems show higher investment costs as compared to the reference floating PV systems, both solutions show similar competiveness for reliabilities up to 45% due to the higher electricity production of the floating-tracking PV systems. The higher electricity production from the floating-tracking PV systems leads to a better competitiveness for reliabilities higher than 90% due to lower capacity requirements for the storage systems.

  • 15.
    Jiang, M.
    et al.
    Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237, China.
    Lv, Y.
    Applied Energy Innovation Institute, Ningbo 315201, China.
    Wang, T.
    China Energy Group, Beijing 100011, China.
    Sun, Z.
    State Key Laboratory of Clean and Efficient Coal-fired Power Generation and Pollution Control, Guodian Science and Technology Research Institute, Nanjing 210023, China.
    Liu, J.
    State Key Laboratory of Clean and Efficient Coal-fired Power Generation and Pollution Control, Guodian Science and Technology Research Institute, Nanjing 210023, China.
    Yu, X.
    Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Business Society and Technology, Mälardalen University, Västerås, Sweden; School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Performance analysis of a photovoltaics aided coal-fired power plant2019In: Energy Procedia, Elsevier Ltd , 2019, p. 1348-1353Conference paper (Refereed)
    Abstract [en]

    In this article, integration of photovoltaics (PV) into a coal-fired power plant was proposed. The performance including economic analysis and environmental impact was conducted by a case study in the northwest area of China. The results show that the PV system can replace part of auxiliary power consumption using renewable electricity to reduce internal power consumption and the emissions. Due to the feature of the integration into a power plant, the curtailment of solar PV electricity does not occur compared to stand-alone PV system. The investment cost, operation and maintenance (O&M) expenditure were feasible compared with other PV power generation plants. 

  • 16.
    Lv, Y.
    et al.
    School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
    Si, P.
    School of Architecture, Tsinghua University, Peking, China.
    Liu, J.
    State Key Laboratory of Clean and Efficient Coal-fired Power Generation and Pollution Control, Nanjing, China.
    Ling, W.
    State Key Laboratory of Clean and Efficient Coal-fired Power Generation and Pollution Control, Nanjing, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH.
    Performance of a hybrid solar photovoltaic - Air source heat pump system with energy storage2019In: Energy Procedia, Elsevier Ltd , 2019, p. 1311-1316Conference paper (Refereed)
    Abstract [en]

    The paper introduced a smart renewable energy based microgrid system which is composed of three subsystems: solar photovoltaic subsystem, air source heat pump subsystem and energy storage subsystem. This microgrid system was applied to the demonstration project located in Xining City, Qinghai Province, China. The energy performance of the smart renewable energy based microgrid system was evaluated and compared with that of traditional energy supply system which totally depends on the electricity grid and natural gas. The comparison study demonstrates that the proposed hybrid energy supply system is superior to traditional system, significantly decreasing additional energy consumption for buildings and reducing pollutant emissions.

  • 17.
    Li, Hailong
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wang, Bin
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Stockholm, Sweden.
    Salman, Chaudhary Awais
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Schwede, Sebastian
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Performance of flue gas quench and its influence on biomass fueled CHP2019In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 180, p. 934-945Article in journal (Refereed)
    Abstract [en]

    For biomass/waste fueled power plants, stricter regulations require a further reduction of the negative impacts on the environment caused by the release of pollutants and withdrawal of fresh water externally. Flue gas quench (FGQ) is playing an important role in biomass or waste fueled combined heat and power (CHP) plants, as it can link the flue gas (FG) cleaning, energy recovery and wastewater treatment. Enhancing water evaporation can benefit the concentrating of pollutant in the quench water; however, when FG condenser (FGC) is not in use, it results in a large consumption of fresh water. In order to deeply understand the operation of FGQ, a mathematic model was developed and validated against the measurements. Based on simulation results key parameters affecting FGQ have been identified, such as the flow rate and temperature of recycling water and the moisture content of FG. A guideline about how to reduce the discharge of wastewater to the external and the withdrawal of external water can be proposed. The mathematic model was also implemented into an ASPEN Plus model about a CHP plant to assess the impacts of FGQ on CHP. Results show that when the FGC was running, increasing the flow rate and decreasing the temperature of recycling water can result in a lower total energy efficiency. 

  • 18.
    Zhang, Yang
    et al.
    KTH Royal Inst Technol, Div Energy Proc, SE-10044 Stockholm, Sweden..
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Div Energy Proc, SE-10044 Stockholm, Sweden.; Malardalen Univ, Sch Business Soc & Engn, SE-72123 Vasteras, Sweden..
    Lundblad, Anders
    RISE Res Inst Sweden, Div Safety & Transport Elect, SE-50462 Boras, Sweden..
    Zheng, Wandong
    Tianjin Univ, Sch Environm Sci & Technol, Tianjin 300072, Peoples R China..
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Div Energy Proc, SE-10044 Stockholm, Sweden.; Malardalen Univ, Sch Business Soc & Engn, SE-72123 Vasteras, Sweden..
    Planning and operation of an integrated energy system in a Swedish building2019In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 199, article id 111920Article in journal (Refereed)
    Abstract [en]

    More flexibility measures are required due to the increasing capacities of variable renewable energies (VRE). In buildings, the integration of energy supplies forms integrated energy systems (IES). IESs can provide flexibility and increase the VRE penetration level. To upgrade a current building energy system into an IES, several energy conversion and storage components are needed. How to decide the component capacities and operate the IES were investigated separately in studies on system planning and system operation. However, a research gap exists that the system configuration from system planning is not validated by actual operation conditions in system operation. Meanwhile, studies on system operation assume that IES configurations are predetermined. This work combines system planning and system operation. The IES configuration is determined by mixed integer linear programming in system planning. Actual operation conditions and forecast errors are considered in system operation. The actual operation profiles are obtained through year-round simulations of different energy management systems. The results indicate that the system configuration from system planning can meet energy demands in system operation. Among different energy management systems, the combination of robust optimization and receding horizon optimization achieves the lowest yearly operation cost. Meanwhile, two scenarios that represent high and low forecast accuracies are studied. Under the high and low forecast accuracy scenarios, the yearly operation costs are about 4% and 6% higher than that obtained from system planning.

  • 19.
    Zhang, C.
    et al.
    School of Chemical Science and Engineering, Royal Institute of Technology, 100 44, Stockholm Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Business, Society and Engineering, Mälardalen University, 721 23 Västerås, Sweden; School of Chemical Science and Engineering, Royal Institute of Technology, 100 44, Stockholm Sweden.
    Liu, C.
    Division of Traffic Analysis and Logistics, Swedish Road and Transport Research Institute, 100 44 Stockholm, Sweden.
    Wang, K.
    Center for Energy and Environmental Policy Research & School of Management and Economics, Beijing Institute of Technology, 100081 Beijing, China.
    Zhang, Y.
    School of Chemical Science and Engineering, Royal Institute of Technology, 100 44, Stockholm Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Business, Society and Engineering, Mälardalen University, 721 23 Västerås, Sweden; School of Chemical Science and Engineering, Royal Institute of Technology, 100 44, Stockholm Sweden.
    Purchase Intention for Crowd-funded Milk Products with Integrated Photovoltaic Water Pumping Systems in China2019In: Energy Procedia, Elsevier Ltd , 2019, Vol. 159, p. 503-508Conference paper (Refereed)
    Abstract [en]

    In comparison with current financing mechanisms for renewable energy systems, crowd-funding financing mechanism offers a new potential source of financing with recent use of social media. Crowd-funding financing mechanism can also increases the social supports for renewable energy systems as users and investors turn to be more actively engaged in energy systems. As a new potential source of financing, crowd-funding mechanism has different forms, including donation, lending, equity and product reward approaches. In this paper, discrete choice model was used to explore whether crowd-funding financing with a novel sociotechnical product reward practice, has the attractions for potential customers to pay for a more sustainable milk product with distributed photovoltaic (PV) system. We empirically investigated the reward-base crowd funding with the specific integrated photovoltaic water pumping (PVWP) system in dairy milk production in China. 48 in-depth interviews were adopted for qualitative analysis of determinants of customer milk purchase decision. The ordered probit regression was employed with 357 online surveys to systematically estimate the purchase intention for the online-crowd-funding sustainable milk. Customer behaviours, environmental consciousness, and the individual socio-demographic factors were tested as potential explanatory variables. In the survey and depth interview samples, we found interviewees as potential customers showed strong purchase intentions to the crowd funding dairy milk for noticing milk quality and nutritious improvement, emission reduction and environmental benefits by the integrated PVWP system. In our findings of the regression results, the females, customers with young children or planning to have children were found with higher willing to purchase than other customers for crowd funding the sustainable dairy milk. The familiarity and popularity with online shopping and pre-sale purchase in China made customers more open and active towards pre-pay and crowd-funding mechanism.

  • 20.
    Yan, Jinyue
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kaldellis, P. J. K.
    University of West Attica, Greece.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    REM2018: Renewable Energy Integration with Mini/Microgrid2019In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 159Article in journal (Other academic)
  • 21.
    Vujanović, M.
    et al.
    University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia.
    Wang, Q.
    Xi’an Jiaotong University, Xi’an, China.
    Mohsen, M.
    American International College, Saad Al Abdullah, Kuwait.
    Duić, N.
    University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    Special issue of applied energy dedicated to SDEWES conferences 2018: Sustainable energy technologies and environmental impacts of energy systems2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 256, article id 113919Article in journal (Refereed)
    Abstract [en]

    This special issue of Applied Energy contains scientific articles presented at the 1st Latin American edition of the SDEWES conference conducted in 2018 in Rio de Janeiro, the 3rd South East Europe edition of SDEWES conference conducted in 2018 in Novi Sad, and the 13th SDEWES conference conducted in 2018 in Palermo. The SDEWES conferences are international scientific conferences that gather scientists and professionals from the field of sustainable development. These conferences have brought together 770 scientists, researchers, and experts in the field of sustainable development of energy and environment. This editorial is based upon 20 papers selected from among 700 contributions presented at the SDEWES conferences in 2018. The topics covered in this special issue include the advances in research and development in the energy sytems and technologies and its environmental impact within the framework of sustainable development. 

  • 22.
    Salman, Chaudhary Awais
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Schwede, Sebastian
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Naqvi, M.
    Karlstad University, Sweden.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH.
    Synergistic combination of pyrolysis, anaerobic digestion, and CHP plants.2019In: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, p. 1323-1329Conference paper (Refereed)
    Abstract [en]

    The anaerobic digestion of biodegradable fraction of municipal solid waste (MSW) is a widely used process for biogas production. However, the biodegradable fraction of MSW also contains lignocellulosic waste which hinders the biogas production if added to the digester in higher quantity. So it needs to be separated from biodegradable waste and sent for alternate treatment, e.g., incineration, landfilling or compositing. Pyrolysis of lignocellulosic waste to produce biochar, syngas, and bio oil is an alternate treatment to consider. Furthermore, there is a reported correlation between the addition of biochar in the digester and higher biogas production. Previously, we coupled the pyrolysis of lignocellulosic waste with anaerobic digestion plant. Pyrolysis produces the biochar and vapors. Biochar was added in the digester to enhance the biomethane production. The vapors produced in the pyrolysis process were converted to biomethane through the catalytic methanation process. The combination gives the overall efficiency of 67%. In this work, we modified the process concept to increase the integration level of these processes. The main issue with the pyrolysis process is its heat required to operate, while some of its downstream processes also generate excess heat. In this study, the pyrolysis of lignocellulosic waste is integrated with an operating combined heat and power (CHP) plant, by using its existing infrastructure for heat transport among different pyrolysis operations. The combustor of the CHP plant provides the heat for drying and pyrolysis while the excess heat is transferred back to the combustor. The biochar produced from pyrolysis is transported back to the digester as an adsorbent. The process simulation results show that the combined efficiency of pyrolysis with CHP plant reached 80%. If the biochar is sent back to the anaerobic digester, the synergetic efficiency of all three processes, i.e., pyrolysis-CHP and anaerobic digestion was obtained at 79.7% as compared with the 67% efficiency when the pyrolysis was only integrated with the anaerobic digestion process.

  • 23.
    Liu, M.
    et al.
    School of Environmental Science and Engineering, Tianjin University, China.
    Zhu, C.
    School of Environmental Science and Engineering, Tianjin University, China.
    Zhang, H.
    School of Environmental Science and Engineering, Tianjin University, China.
    Zheng, W.
    School of Environmental Science and Engineering, Tianjin University, China.
    You, S.
    School of Environmental Science and Engineering, Tianjin University, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    The environment and energy consumption of a subway tunnel by the influence of piston wind2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 246, p. 11-23Article in journal (Refereed)
    Abstract [en]

    With the flourishing development of the subway construction, it becomes increasingly urgent to improve the subway tunnel environment and reduce the energy consumption of the tunnel ventilation system. The tunnel environment is significantly affected by the piston wind, which is influenced by the train speed. In this paper, a three-dimensional computational model of a subway tunnel is developed and validated through experiments. The model is used to study the carbon dioxide concentration and thermal environment of the subway tunnel. The optimal train speed is proposed with the aim to minimize the volume of mechanical supply air and to optimize the carbon dioxide concentration and thermal environment of the tunnel. In parallel with the considerations of tunnel environment, the subways in 25 cities of China are analyzed to study the energy conservation of the tunnel ventilation system by making full use of piston wind. The results indicate that the optimal train speed is 30 m/s based on the carbon dioxide concentration and thermal environment. The effective utilization of the piston wind can reduce 13%∼32% of the energy consumption for tunnel ventilation. The calculation method of the optimal train speed developed in this paper is also applicable to ordinary railway tunnels and high-speed railway tunnels.

  • 24.
    Yan, Jinyue
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH.
    Yang, X.
    Xi'an Jiaotong University, Xi'an, China.
    Thermal energy storage2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, p. A1-A6Article in journal (Refereed)
  • 25.
    Li, Hailong
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Key Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin, 300134, China.
    Dong, B.
    Key Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin, 300134, China.
    Yu, Z.
    Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger, 4036, Norway.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhu, K.
    Key Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin, 300134, China.
    Thermo-physical properties of CO2 mixtures and their impacts on CO2 capture, transport and storage: Progress since 20112019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 255, article id 113789Article in journal (Refereed)
    Abstract [en]

    The knowledge of accurate thermo-physical properties is crucial for the development and deployment of CO2 capture, transport and storage (CCS). The progress on the experimental data and theoretical models regarding thermo-physical properties of CO2 mixtures as well as the property impact on the design and operation of different CCS processes has been updated. The newly published experimental data since 2011 have been collected and reviewed based on which the new knowledge gaps regarding measurements have been identified. There have also been some advanced models proposed recently, which have shown good performances. The collected model performances don't show there exist a model that is superior to others; but they still provide a good guideline regarding model selection. However, developing more-complex models as the complexity may not necessarily improve the accuracy when empirical parameters were included and well-tuned. By comparing the importance of the properties and the accuracy of existing models, suggestions were given regarding the development of property models that should be prioritized. 

  • 26.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Cioccolanti, Luca
    François, B.
    Jurasz, J.
    Zhang, Yang
    Stridh, Bengt
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    A Multi-Country Economic Analysis Of Lithium-Ion Batteries For Peak Shaving And Price Arbitrage In Commercial Buildings2018Conference paper (Refereed)
  • 27.
    Lv, Y.
    et al.
    Qilu University of Technology, School of Mechanical and Automotive .
    Si, P.
    School of Architecture, Tsinghua University, Peking, China.
    Rong, X.
    China Southwest Architecture Design and Research Institute Corp. Ltd., Chengdu, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    An Optimization Method for CCHP and River Water Source Heat Pump Combined System2018In: Energy Procedia, Elsevier Ltd , 2018, p. 592-597Conference paper (Refereed)
    Abstract [en]

    Combined Cooling, Heating and Power (CCHP) systems have been widely utilized in the buildings to achieve high efficiency cascade utilization of energy. Heat pump is another widely utilized technology to improve the building energy efficiency. The paper presents a hybrid system which integrates the CCHP with river water source heat pump to combine the advantages of these two technologies. A physical model with energy storage module was firstly developed for the combined system. A case study was further carried out to investigate the optimized configuration and operation performance of the combined system.

  • 28. Zhang, Yang
    et al.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Anders, Lundblad
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, Chi
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH, Sweden.
    Building Energy System: From System Planning To Operation2018Conference paper (Refereed)
  • 29.
    Feng, J. -C
    et al.
    School of Engineering, Sun Yat-Sen University, Guangzhou, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Chemical Science and Engineering, Royal Institute of Technology, Teknikringen 42, Stockholm, Sweden.
    Yu, Z.
    School of Engineering, Sun Yat-Sen University, Guangzhou, China.
    Zeng, X.
    School of Engineering, Sun Yat-Sen University, Guangzhou, China.
    Xu, W.
    School of Engineering, Sun Yat-Sen University, Guangzhou, China.
    Case study of an industrial park toward zero carbon emission2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 209, p. 65-78Article in journal (Refereed)
    Abstract [en]

    Industrial park shoulders heavy responsibilities for economic development, and in the meantime, acts the role as energy consumer and carbon emitter. Under the background of holding the average global temperature increase limited in 2 °C compared to the pre-industrial level, which was proposed in the Paris Agreement, the development of zero carbon emission at the industrial park level is of great importance. This study investigated how to realize zero carbon emission at an industrial park level. In addition, a practical case study of the Southern China Traditional Chinese Medicine Industrial Park located in the Zhongshan City, Guangdong Province of China was conducted. Scenario analyses were projected to realize zero carbon emission in this industrial park and the results show that zero carbon emission can be realized under all the three scenarios. Economic assessments found that purchasing carbon offsets get the minimum cost effectiveness under current market situation. However, purchasing carbon offset may not be the best choice from the aspect of absolute reduction. Sensitivity analyses illustrate that the cost effectiveness of carbon reduction is remarkably influenced by the carbon price and solar energy cost reduction ratio. Meanwhile, applying large-scale renewable energy and producing more carbon offset can harvest more economic and carbon reduction benefits when the current solar energy cost has been reduced by 90%. Moreover, challenges of building zero-carbon industrial park as well as the corresponding solution schemes were discussed.

  • 30. Zhang, Chi
    et al.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Liu, C.
    Zhang, Yang
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH, Sweden.
    Wang, K.
    Choice Preferences And Willingness‐To‐Pay For Crowd‐Funding With Integrated Photovoltaic Water Pumping System In Dairy Milk Production In China2018Conference paper (Refereed)
  • 31.
    Yang, Xiaohu
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China.
    Bai, Q.
    Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China.
    Guo, Z.
    Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China.
    Niu, Z.
    Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China.
    Yang, C.
    School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore.
    Jin, L.
    Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China.
    Lu, T. J.
    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Department of Chemical Engineering and Technology/Energy Processes, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 229, p. 700-714Article in journal (Refereed)
    Abstract [en]

    Melting heat transfer in open-cell metal foams embedded in phase-change materials (PCMS) predicted by the volume-averaged method (VAM) was systematically compared with that calculated using direct numerical simulation (DNS), with particular attention placed upon the contribution of natural convection in the melt region to overall phase change heat transfer. The two-temperature model based on the assumption of local thermal non-equilibrium was employed to account for the large difference of thermal conductivity between metallic ligaments and PCM (paraffin). The Forchheimer extended Darcy model was employed to describe the additional flow resistance induced by metal foam. For the DNS, a geometric model of metal foam based on tetrakaidehedron cells was reconstructed. The DNS results demonstrated significant temperature difference between ligament surface and PCM, thus confirming the feasibility of local thermal non-equilibrium employed in VAM simulations. Relative to the DNS results, the VAM combined with the two-temperature model could satisfactorily predict transient solid-liquid interface evolution and local temperature distribution, although pore-scale features of phase change were lost. The presence of natural convection affected significantly the melting front shape, temperature distribution and full melting. The contribution of natural convection to overall phase change heat transfer should be qualitatively and quantitatively given sufficient consideration from both macroscopic (VAM) and microscopic (DNS) point of views. Besides, practical significance and economic prospective using metal foam in TES unit for WHR system to provide residential heating or hot water is discussed and analyzed.

  • 32.
    Lv, Y.
    et al.
    School of Mechanical and Automotive Engineering, Qilu University of Technology, Jinan, China.
    Xia, L.
    School of Mechanical and Automotive Engineering, Qilu University of Technology, Jinan, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Bi, J.
    School of Mechanical and Automotive Engineering, Qilu University of Technology, Jinan, China.
    Design of a Hybrid Fiber Optic Daylighting and PV Solar Lighting System2018In: Energy Procedia, Elsevier Ltd , 2018, p. 586-591Conference paper (Refereed)
    Abstract [en]

    Residential buildings with limited natural lighting are generally lit by fuel-based electricity which contributes to increase of CO2 concentration in the atmosphere. This paper presents the design of a hybrid fiber-optic daylighting and PV solar lighting system for household applications. The system is composed of a light collecting subsystem, a light guiding subsystem, an optical fiber light diffuser subsystem and corresponding control system. Preliminary system performance shows that, the developed system could provide comfortable and natural indoor illumination. Meanwhile, the hybrid lighting system can provide an average of 9h of electric lighting under clear sky conditions, and reduce 158.2kg of carbon dioxide emission in a year within the tested dark room of 5m2.

  • 33.
    Lv, Y.
    et al.
    Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
    Si, P.
    Tsinghua University, Peking, China.
    Rong, X.
    China Southwest Architecture Design and Research Institute Corp. Ltd., Chengdu, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    Feng, Y.
    China Southwest Architecture Design and Research Institute Corp. Ltd., Chengdu, China.
    Zhu, X.
    Sichuan Provincial Architectural Design Institute, Chengdu, China.
    Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 219, p. 11-19Article in journal (Refereed)
    Abstract [en]

    Determination of optimum tilt angle and orientation of solar collectors by maximizing the total solar radiation may overestimate the energy production benefits, because a considerable amount of solar radiation is ineffective for practical solar collectors. In this paper, the concept of effective solar heat collection is proposed to rule out the ineffective solar radiation that could not be converted to available energy. Accordingly, an optimized mathematical model is developed and used to determine the optimum tilt angle and orientation of solar collectors installed in Lhasa during the heating season. Compared with the total solar radiation based optimum results, there is a deviation of 5° in the optimum orientations based on the effective solar heat collection. The case study shows that it is not advisable to adjust the optimum tilt angle on a monthly basis because there is no significance change in total solar energy gains in comparison with the case of no such adjustment during the heating season. In addition, the correction factors to achieving the maximum effective solar heat collection are given at different tilt angles and orientations to guide installation of solar collectors in practical engineering applications.

  • 34.
    Wang, C.
    et al.
    Tianjin University, Tianjin, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH, Stockholm, Sweden.
    Marnay, C.
    Lawrence Berkeley National Laboratory, CA, United States.
    Djilali, N.
    University of Victoria, Victoria, Canada.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wu, J.
    Cardiff University, Cardiff, United Kingdom.
    Jia, H.
    Tianjin University, Tianjin, China.
    Distributed Energy and Microgrids (DEM)2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 210, p. 685-689Article in journal (Refereed)
  • 35.
    Zhang, C.
    et al.
    Energy Processes Division, Royal Institute of Technology, Stockholm, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Energy Processes Division, Royal Institute of Technology, Stockholm, Sweden.
    Yang, J.
    School of Humanities and Economic Management, China University of Geosciences, Beijing, China.
    Yu, C.
    Department of Earth System Science, Tsinghua University, Beijing, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Energy Processes Division, Royal Institute of Technology, Stockholm, Sweden.
    Economic assessment of photovoltaic water pumping integration with dairy milk production2018In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 177, p. 750-764Article in journal (Refereed)
    Abstract [en]

    As dairy consumption grows, domestic dairy farms face challenges in reducing the cost of feeds and the production of high-quality milk for market demands. This paper aims to introduce and integrate solar energy into the milk production chain to investigate its economic performance. By collecting data on milk production processes from 11 dairy farms in China, we quantified electricity usage and costs of milk production to identify the best and worst cases. Crop yields response to the water demand and the electricity requirements of the dairy farms were considered. The study simulated scenarios of self-sufficiency at 20%, 80%, and 100%, in the identified farms by integrating a photovoltaic water pumping (PVWP) system to provide both power and water for alfalfa and other feeds’ irrigation and subsequent milk production. We evaluated annual discounted cost, revenue and net profit under each scenario and case. The results showed that a dairy farm with an integrated PVWP system and self-sufficient feeds would lead to value add-ins, such as electricity saving with solar energy generation, economic cost saving of crops, and CO2 emission reduction. The analysis on return on investment (ROI) and internal rate of return (IRR) revealed that not all the self-sufficient feeds can bring positive marginal profit. Among the investigated scenarios and cases, the dairy farm marked out by the highest ROI with 3.12 and IRR with 20.4%, was the farm where the integrated PVWP system was used to reach 20% self-sufficiency (self-production of only alfalfa). The other scenarios and cases with higher levels of self-sufficiency showed lower ROIs and IRRs. This indicates that high self-production levels of feeds decrease the total profit due to high investment cost. Sensitivity analyses of crop price and operational cost were conducted for ROI with single and double factor approaches. Scale and production of feeds proportions should be carefully considered in improving the economic performance of dairy milk production.

  • 36.
    Ding, Y.
    et al.
    College of Electrical Engineering, Zhejiang University, Hangzhou, ChinaCollege of Electrical Engineering, Zhejiang University, Hangzhou, ChinaCollege of Electrical Engineering, Zhejiang University, Hangzhou, ChinaCollege of Electrical Engineering, Zhejiang University, Hangzhou, ChinaCollege of Electrical Engineering, Zhejiang University, Hangzhou, ChinaCollege of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Shao, C.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Division of Energy Processes, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
    Song, Y.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Zhang, C.
    Division of Energy Processes, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
    Guo, C.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 228, p. 426-436Article in journal (Refereed)
    Abstract [en]

    The inherent stochastic nature of wind power requires additional flexibility during power system operation. Traditionally, conventional generation is the only option to provide the required flexibility. However, the provision of the flexibility from the conventional generation such as coal-fired generating units comes at the cost of significantly additional fuel consumption and carbon emissions. Fortunately, with the development of the technologies, energy storage and customer demand response would be able to compete with the conventional generation in providing the flexibility. Give that power systems should deploy the most economic resources for provision of the required operational flexibility, this paper presents a detailed analysis of the economic characteristics of these key flexibility options. The concept of “balancing cost” is proposed to represent the cost of utilizing the flexible resources to integrate the variable wind power. The key indicators are proposed respectively for the different flexible resources to measure the balancing cost. Moreover, the optimization models are developed to evaluate the indicators to find out the balancing costs when utilizing different flexible resources. The results illustrate that exploiting the potential of flexibility from demand side management is the preferred option for integrating variable wind power when the penetration level is below 10%, preventing additional fuel consumption and carbon emissions. However, it may require 8% of the customer demand to be flexible and available. Moreover, although energy storage is currently relatively expensive, it is likely to prevail over conventional generation by 2025 to 2030, when the capital cost of energy storage is projected to drop to approximately $ 400/kWh or lower.

  • 37.
    Yan, Jinyue
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH-Royal Institute of Technology, Sweden.
    Wu, J.
    Tongji University, China.
    Yang, Ying
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wang, H.
    Tongji University, China.
    Wang, X.
    Tongji University, China.
    Editorial cleaner energy for cleaner city2018In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 152, p. 1-2Article in journal (Refereed)
  • 38.
    Zhang, Y.
    et al.
    KTH-Royal Institute of Technology, Stockholm, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH-Royal Institute of Technology, Stockholm, Sweden.
    Yang, Ying
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Stridh, Bengt
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Lundblad, A.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. RISE Research Institutes of Sweden, Borås, Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH-Royal Institute of Technology, Stockholm, Sweden.
    Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 223, p. 430-442Article in journal (Refereed)
    Abstract [en]

    The increasing penetration level of renewable energy requires more flexibility measures to be implemented in future energy systems. Integrating an energy consumer’s local energy supplies connects multiple energy networks (i.e., the electrical grid, the district heating network, and gas network) in a decentralized way. Such integration enhances the flexibility of energy systems. In this work, a Swedish office building is investigated as a case study. Different components, including heat pump, electrical heater, battery and hot water storage tank are integrated into the electricity and heat supply system of the building. Special focus is placed on the flexibility that the studied building can provide to the electrical grid (i.e., the building modulates the electricity consumption in response to the grid operator’s requirements). The flexibility is described by two metrics including the flexibility hours and the flexibility energy. Optimization of the component capacities and the operation profiles is carried out by using Mixed Integer Linear Programming (MILP). The results show that the system fully relies on electricity for the heat demand when not considering the flexibility requirements of the electrical grid. This suggests that district heating is economically unfavorable compared with using electricity for the heat demand in the studied case. However, when flexibility requirements are added, the system turns to the district heating network for part of the heat demand. The system provides great flexibility to the electrical grid through such integration. The flexibility hours can be over 5200 h in a year, and the flexibility energy reaches more than 15.7 MWh (36% of the yearly electricity consumption). The yearly operation cost of the system slightly increases from 62,273 to 65,178 SEK when the flexibility hours increase from 304 to 5209 h. The results revealed that flexibility can be provided from the district heating network to the electrical grid via the building.

  • 39.
    Zhang, Yang
    et al.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yang, Ying
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Lundblad, Anders
    Division Safety and Transport/Electronics, RISE Research Institutes of Sweden, SE-50462 Borås, Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Energy Flexibility through the Integrated Energy Supply System in Buildings: A Case Study in Sweden2018In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 145, p. 564-569Article in journal (Refereed)
    Abstract [en]

    The increasing penetration level of renewable energies requires more flexibility measures at the consumption side. Flexible energy prices have been placed by energy providers to promote flexibility measures from energy users. However, because of the current energy supply system in buildings, these flexible energy prices haven’t been fully taken advantage of. This study focuses on the integrated energy supply system in buildings. A Swedish office building is used as the case study. The integrated energy supply system is built by installing new components, including battery, heat pump and electrical heater, and hot water tank. Mixed Integer Linear Programming (MILP) problems are solved to determine the optimal component capacities and operation profiles. The results indicate that all the studied system configurations achieve lower net present cost (NPC) than the current system. It suggests that the integrated energy supply system can take advantage of the flexible energy prices and lower the overall energy cost in the building. Among the studied configurations, the combination of air source heat pump (ASHP) and electrical heater (EH) has the lowest investment cost. This combination also has the lowest NPC except in the scenario with low borehole cost.

  • 40.
    Xu, J.
    et al.
    Tongji University, Shanghai, China.
    Luo, P.
    Tongji University, Shanghai, China.
    Lu, B.
    Tongji University, Shanghai, China.
    Wang, H.
    Tongji University, Shanghai, China.
    Wang, X.
    Tongji University, Shanghai, China.
    Wu, J.
    Tongji University, Shanghai, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Sweden.
    Energy-water nexus analysis of wastewater treatment plants (WWTPs) in China based on statistical methodologies2018In: Energy Procedia, Elsevier Ltd , 2018, p. 259-264Conference paper (Refereed)
    Abstract [en]

    Wastewater treatment plants (WWTPs) are considered as energy-intensive facilities. Against the background of stricter policy requirements and discharge standard, thousands of municipal WWTPs are experiencing upgrading and reconstruction in China. However, the accompanying energy consumption cannot be ignored. Based on the statistical analysis of energy consumption and relevant factors from data of more than six thousand WWTPs over China, in this paper we analyzed the most influential factors related to energy consumption, which include treatment technology, wastewater amount, removed pollutants, social and economic characteristics, etc. Furthermore, we set up systematic method of energy performance assessment for WWTPs and explored the potential of energy saving in WWTPs. Results showed that processing capacity, organic pollutant concentration, discharge standard and economic factors have major effects on energy efficiency. Although sludge treatment and disposal normally consume intensive energy, it is possible to recover energy from biomass in the sludge. The results indicate that there is huge potential for energy saving and recovery in WWTPs, and we propose a conceptual roadmap for energy efficiency improving in WWTPs in China.

  • 41.
    Li, Hailong
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Ningbo RX New Materials Tch. Co. Ltd., Ningbo, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Ningbo RX New Materials Tch. Co. Ltd., Ningbo, China.
    Tan, Y.
    Ningbo RX New Materials Tch. Co. Ltd., Ningbo, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Feasibility study about using a stand-alone wind power driven heat pump for space heating2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 228, p. 1486-1498Article in journal (Refereed)
    Abstract [en]

    Reducing energy consumption and increasing the use of renewable energy in the building sector are crucial to the mitigation of climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat to the detached houses, especially those that even do not have access to the electricity grid. This work is to investigate the dynamic performance of a heat pump system driven by wind turbine through dynamic simulations. In order to understand the influence on the thermal comfort, which is the primary purpose of space heating, the variation of indoor temperature has been simulated in details. Results show that the wind turbine is not able to provide the electricity required by the heat pump during the heating season due to the intermittent characteristic of wind power. To improve the system performance, the influences of the capacity of wind turbine, the size of battery and the setpoint of indoor temperature were assessed. It is found that increasing the capacity of wind turbines is not necessary to reduce the loss of load probability; while on the contrary, increasing the size of battery can always reduce the loss of load probability. The setpoint temperature clearly affects the loss of load probability. A higher setpoint temperature results in a higher loss of thermal comfort probability. In addition, it is also found that the time interval used in the dynamic simulation has significant influence on the result. In order to have more accurate results, it is of great importance to choose a high resolution time step to capture the dynamic behaviour of the heat supply and its effect on the indoor temperature.

  • 42.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zaccaria, Valentina
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, Yang
    Stridh, Bengt
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Flexibility Services Provided by Building Thermal Inertia2018Conference paper (Refereed)
  • 43.
    Salman, Chaudhary Awais
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Naqvi, Muhammad
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Karlstad University, Sweden.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    Gasification process integration with existing combined heat and power plants for polygeneration of dimethyl ether or methanol: A detailed profitability analysis2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 226, p. 116-128Article in journal (Refereed)
    Abstract [en]

    Combustion of waste for cogeneration of heat and power is the most convenient and practical choice to carry out through combined heat and power (CHP) plants. But, seasonal variation in heat demand throughout the year affects the operation of CHP plants. This fluctuation in the CHP operation cause less annual operating hours for the plant equipment and is also not profitable for stakeholders. This study aims to assess the technical potential of integrated gasification process with existing CHP plants for either dimethyl ether (DME) or methanol production through refuse-derived fuel (RDF). Process integration considers that the CHP plant provides the necessary heat for biofuel synthesis during off-peak hours. Mass and heat integration methods are used to develop and simulate the polygeneration processes for heat, power, and biofuel production. Both technical and economic indicators are reported and compared to assess the potential for both biofuels through process integration. Annual operation data of a real CHP plant has been extracted to evaluate the integrated processes. A flexible gasification configuration is selected for the integrated approach i.e. CHP runs at full load to provide the heat demand and only the excess heat of CHP plant is utilized for biofuel production. The energetic efficiencies of the polygeneration systems are compared with the standalone systems. Technical analysis of process integration shows the enhancement of the operational capacity of CHP during off-peak hours and it can produce biofuels without compromising the annual heat demand. Production of methanol through process integration shows ∼67% energetic efficiency while methanol production gives ∼65%. The efficiencies are higher than standalone DME and methanol processes (51% and 53%, respectively) but lower than standalone CHP plant i.e. 81%, however the process integration increases the operating time of the CHP plant with more economic benefits. Economic analysis coupled with uncertainty analysis through Monte Carlo simulations shows that by integrating CHP with gasifier to produce biofuels is significantly profitable as compared with only heat and electricity production. But, DME as a potential product shows more economic benefits than methanol. The uncertainty analysis through Monte Carlo simulations shows that the profitable probability of DME as a product in future is also greater than methanol due to higher DME selling price. The uncertainty analysis further shows that prices of DME and methanol with waste biomass prices in future will have a greater impact on the economic performance of the proposed polygeneration process. 

  • 44.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Varini, Maria
    Chiche, Ariel
    Zhang, Y.
    Zhang, Chi
    Lundblad, Anders
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    High Share Renewable Islands Through Synergies Between Energy Networks2018Conference paper (Refereed)
  • 45.
    Tian, Z.
    et al.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Hao, Y.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Li, W.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH, Sweden.
    Li, H.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH, Sweden.
    Jin, H.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Integrating concentrating PVs in biogas upgrading2018In: Energy Procedia, Elsevier Ltd , 2018, p. 598-603Conference paper (Refereed)
    Abstract [en]

    Biogas produced from anaerobic digestion processes has been considered as an important alternative to natural gas and plays a key role in the emerging market for renewable energy. By removing CO2, biogas can be upgraded to vehicle fuel. Chemical absorption is one of the widely used upgrading technologies, which advantages include high purity and low loss of biomethane. However, chemical absorption usually suffers from the high consumption of thermal energy, which is required by the regeneration of the solvent. Aiming at achieving a more sustainable and efficient biomethane production, this work proposed a novel system, which integrate concentrating photovoltaic/thermal hybrid (C-PV/T) in the upgrading of biogas. Due to the ability to produce electricity and heat simultaneously and efficiently, C-PV/T can provide the demands of both the electricity and heat. By doing dynamic simulation of the energy production of C-PV/T, the technical feasibility of such a system is analyzed. Based on the design to meet the heat demand of solvent regeneration, without energy storage, the produced heat can cover 17% of the heat demand of the solvent regeneration, but 51.1% of the electricity demand; meanwhile, 140.3 MWh excess electricity can be sold for one year.

  • 46.
    Hao, Y.
    et al.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Li, W.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Tian, Z.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, 100190, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Stockholm, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Jin, H.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Stockholm, Sweden.
    Integration of concentrating PVs in anaerobic digestion for biomethane production2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, ISSN 0306-2619, Vol. 231, p. 80-88Article in journal (Refereed)
    Abstract [en]

    Biogas produced from anaerobic digestion processes is considered as an important alternative to natural gas and plays a key role in the emerging market for renewable energy. Aiming at achieving a more sustainable and efficient biomethane production, this work proposed a novel energy system, which integrates concentrating photovoltaic/thermal (C-PV/T) hybrid modules into a biogas plant with chemical absorption for biogas upgrading. The investigated energy system was optimized based on the data from an existing biogas plant, and its techno-economic feasibility was evaluated. Results show that about 7% of the heat consumption and 12% of the electricity consumption of the biogas plant can be covered by solar energy, by using the produced heat in a cascade way according to the operating temperature of different processes. The production of biomethane can also be improved by 25,800 N m3/yr (or 1.7%). The net present value of the integrated system is about 2.78 MSEK and the payback period is around 10 years. In order to further improve the economic performance, it is of great importance to lower the capital cost of the C-PV/T module. 

  • 47.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Dept Chem Engn, Stockholm, Sweden..
    Zhang, J.
    Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA..
    Yao, T.
    Sci Syst & Applicat Inc SSAI, Lanham, MD 20706 USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Andersson, S.
    Swedish Meteorol & Hydrol Inst, SE-60176 Norrkoping, Sweden..
    Landelius, T.
    Swedish Meteorol & Hydrol Inst, SE-60176 Norrkoping, Sweden..
    Melton, F.
    NASA ARC CREST, Moffett Field, CA 94035 USA.;Calif State Univ Monterey Bay, Sch Nat Sci, Seaside, CA 93955 USA..
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Dept Chem Engn, SE-10044 Stockholm, Sweden..
    Managing agricultural drought in Sweden using a novel spatially-explicit model from the perspective of water-food-energy nexus2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 197, p. 1382-1393Article in journal (Refereed)
    Abstract [en]

    Using a multi-disciplinary approach, this paper integrated spatial analysis with agricultural and energy system modelling to assess the impacts of drought on crop water demand, water availability, crop yield, and electricity requirements for irrigation. This was done by a novel spatially-explicit and integrated water-food-energy nexus model, using the spatial climatic data generated by the mesoscale MESAN and STRANG models. In this study, the model was applied to quantify the effects of drought on the Swedish irrigation sector in 2013, a typical drought year, for a specific crop. The results show that drought can severely affect the crop yield if irrigation is not applied, with a peak yield reduction of 18 t/ha, about 50 % loss as compared to the potential yield in irrigated conditions. Accordingly, the water and energy requirements for irrigation to halt the negative drought effects and maintain high yields are significant, with the peaks up to 350 mm and 700 kWh per hectare. The developed model can be used to provide near real-time guidelines for a comprehensive drought management system. The model also has significant potentials for applications in precision agriculture, especially using high-resolution satellite data.

  • 48.
    Liu, J.
    et al.
    South University of Science and Technology of China, Shenzhen, China.
    Mao, G.
    South University of Science and Technology of China, Shenzhen, China.
    Hoekstra, A.Y.
    University of Twente, Netherlands.
    Wang, D.
    China Institute of Water Resources and Hydropower Research, Beijing, China.
    Wang, J.
    China Institute of Water Resources and Hydropower Research, Beijing, China.
    Zheng, C.
    South University of Science and Technology of China, Shenzhen, China.
    van Vliet, M.T.H
    Wageningen University, Netherlands.
    Wu, M.
    Argonne National Laboratory, United States.
    Ruddell, B.
    Northern Arizona University, US.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    Managing the energy-water-food nexus for sustainable development2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 210, p. 377-381Article in journal (Refereed)
  • 49.
    Guo, S.
    et al.
    Inner Mongolia University of Science and Technology, Baotou, China.
    Liu, Q.
    Chinese Academy of Sciences, Beijing, China.
    Zhao, J.
    Tianjin University, Tianjin, China.
    Jin, G.
    Inner Mongolia University of Science and Technology, Baotou, 014010, China.
    Wu, W.
    Inner Mongolia University of Science and Technology, Baotou, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology (KTH), Stockholm, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Jin, H.
    Chinese Academy of Sciences, Beijing, China.
    Mobilized thermal energy storage: Materials, containers and economic evaluation2018In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 177, p. 315-329Article in journal (Refereed)
    Abstract [en]

    The transportation of thermal energy is essential for users who are located far away from heat sources. The networks connecting them achieve the goal in efficient heat delivery and reasonable cost, especially for the users with large heat demands. However, it is difficult to satisfy the heat supply of the detached or emergent users with the existing pipelines. Therefore, a promising alternative, called mobilized thermal energy storage (M-TES), was proposed to deliver the heat flexibly without the restriction of networks. In this paper, a review of studies on M-TES is conducted in terms of materials, containers and economic evaluation. The potential candidates of materials, such as sugar alcohols, hydrated salts, alkalies and zeolite are reviewed and compared based on their thermophysical properties, price, advantages and disadvantages. Various containers, including the shell-and-tube, encapsulated, direct-contact, detachable and sorptive types, are discussed from the aspects of configuration, performance and utilization. Furthermore, the studies on the economic evaluation of M-TES systems are summarized and discussed based on the analysis of the economic indicators, including initial cost, operating cost, revenue, subsidy and energy cost. Finally, the challenges and future perspectives for developing M-TES are presented. © 2018 Elsevier Ltd

  • 50.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Cheng, Fu
    Ericson, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Andersson, Sandra
    Landelius, Tomas
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Modelling the diffuse component of solar radiation using artificial intelligence techniques2018Conference paper (Refereed)
1234567 1 - 50 of 364
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf