mdh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Sahoo, Smruti
    et al.
    Mälardalen University, School of Business, Society and Engineering.
    Xin, Zhao
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kyprianidis, Konstantinos
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kallfas, Anestis
    Aristotle University of Thessaloniki Thessaloniki, Greece.
    PERFORMANCE ASSESSMENT OF AN INTEGRATED PARALLEL HYBRID-ELECTRIC PROPULSION SYSTEM AIRCRAFT2019Conference paper (Refereed)
    Abstract [en]

    Hybrid-electric propulsion system promises avenues for a greener aviation sector. Ground research work was performed in the past for the feasibility assessment, at the system level, for such novel concepts and the results showed were promising. Such designs, however, possess unique challenges from an operational point of view, and for sizing of the sub-system components; necessitating further design space exploration for associating with an optimal operational strategy. In light of the above, the paper aims at presenting an operational analysis and performance assessment study, for a conceptualised parallel hybrid design of an advanced geared turbofan engine, based on 2035 timeframe technology level. It is identified that the hybrid power operation of the engine is constrained with respect to the requirement of maintaining an adequate surge margin for the low pressure side components; however, a core re-optimised engine design with consideration of electrical power add-in for the design condition, relieves such limit. Therefore such a design, makes it suitable for implementation of higher degree of hybridisation. Furthermore, performance assessment is made both at engine and engine-aircraft integrated level for both scenarios of hybrid operation and the benefits are established relative to the baseline engine. The performance at engine level engine specific fuel consumption (SFC), thrust specific power consumption (TSPC), and overall efficiency, shows improvement in both hybridised scenarios. Improvement in SFC is achieved due to supply of the electrical power, whereas, the boost in TSPC, and overall efficiency is attributed to the use of higher efficiency electrical drive system. Furthermore, it is observed that while the hybridised scenario performs better at engine level, the core re-optimised design exhibits a better saving for block fuel/energy consumption, due to the considerable weight savings in the core components.

  • 2.
    Stridh, Bengt
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. ABB Corporate Research, Sweden.
    Rosenlind, Johanna
    Mälarenergi, Sweden.
    Bagge, Patrik
    Mälarenergi, Sweden.
    Sahoo, Smruti
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zetterström, Patrik
    Uppsala University, Sweden.
    Power quality experiences from Sweden's first MW photovoltaics park and impact on LV planning2016In: IEEE ISGT 2016: Innovative Smart Grid Technologies, 2016Conference paper (Refereed)
    Abstract [en]

    The first 1 MW PV park in Sweden was installed in 2014. A concern from the grid owner perspective is how the growing number of PV installations will influence the power quality in their grids. The power quality impact from the 1 MW park was demonstrated to fall within the regulating limitations in EIFS 2013:1 for the following aspects: voltage changes, voltage harmonics, interharmonics, and voltage unbalance. However, the slow voltage variations were exceeding the Swedish industry recommendations (AMP) governing a single production source. This deviation occurred during 0.74% of the studied two-month period. To meet AMP recommendations it would have been necessary to install a separate cable intended only for the solar park itself and connected closer to the substation. Perhaps a more appropriate alternative would have been to connect the solar park on the closest 20 kV grid.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf