mdh.sePublikationer
Ändra sökning
Avgränsa sökresultatet
2345678 201 - 250 av 371
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 201.
    Roskilly, A. P.
    et al.
    Newcastle University, United Kingdom .
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Sustainable thermal energy management2017Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 186, s. 249-250Artikel i tidskrift (Refereegranskat)
  • 202.
    Salman, Chaudhary Awais
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Naqvi, Muhammad
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Institute of Technology, Stockholm, Sweden.
    A polygeneration process for heat, power and DME production by integrating gasification with CHP plant: Modelling and simulation study2017Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, s. 1749-1758Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biofuels are a good substitute for the transport sector petroleum fuels to minimize carbon footprint and greenhouse gases emissions. Di-Methyl Ether (DME) is one such alternative with properties similar to liquefied petroleum gas but with lower SOx, NOx, and particulate emissions. In this work, a polygeneration process, integrating an existing combined heat and power (CHP) plant with biomass gasification to synthesize DME, is proposed and modelled. Process integration is based on a hypothesis that the CHP plant provides the necessary heat to run the co-located gasification plant for DME synthesis and the waste heat from the gasification process is recovered and transferred to the CHP plant. The feed for gasification is taken as refuse derived fuel (RDF) instead of conventional wood derived biomass. The process integration leads to higher overall combined efficiency (up to 71%) which is greater than stand-alone efficiencies (up to 63%) but lower than stand-alone CHP plant efficiency (73.2%). The further technical evaluation shows that the efficiency of the polygeneration process is depends heavily on the gasifier capacity integrated with the existing CHP plant and also on the conversion route selected for DME synthesis i.e. recycling of unconverted syngas to the DME reactor or transferring it to the boiler of the CHP plant. The simulation results also indicate that once-through conversion yields less DME than recycling, but at the same time, once-through conversion affects the district heat and electric power production of the CHP plant lesser than by using the recycling route.

  • 203.
    Salman, Chaudhary Awais
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Naqvi, Muhammad
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Karlstad University, Sweden.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Institute of Technology, Stockholm, Sweden.
    Gasification process integration with existing combined heat and power plants for polygeneration of dimethyl ether or methanol: A detailed profitability analysis2018Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 226, s. 116-128Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Combustion of waste for cogeneration of heat and power is the most convenient and practical choice to carry out through combined heat and power (CHP) plants. But, seasonal variation in heat demand throughout the year affects the operation of CHP plants. This fluctuation in the CHP operation cause less annual operating hours for the plant equipment and is also not profitable for stakeholders. This study aims to assess the technical potential of integrated gasification process with existing CHP plants for either dimethyl ether (DME) or methanol production through refuse-derived fuel (RDF). Process integration considers that the CHP plant provides the necessary heat for biofuel synthesis during off-peak hours. Mass and heat integration methods are used to develop and simulate the polygeneration processes for heat, power, and biofuel production. Both technical and economic indicators are reported and compared to assess the potential for both biofuels through process integration. Annual operation data of a real CHP plant has been extracted to evaluate the integrated processes. A flexible gasification configuration is selected for the integrated approach i.e. CHP runs at full load to provide the heat demand and only the excess heat of CHP plant is utilized for biofuel production. The energetic efficiencies of the polygeneration systems are compared with the standalone systems. Technical analysis of process integration shows the enhancement of the operational capacity of CHP during off-peak hours and it can produce biofuels without compromising the annual heat demand. Production of methanol through process integration shows ∼67% energetic efficiency while methanol production gives ∼65%. The efficiencies are higher than standalone DME and methanol processes (51% and 53%, respectively) but lower than standalone CHP plant i.e. 81%, however the process integration increases the operating time of the CHP plant with more economic benefits. Economic analysis coupled with uncertainty analysis through Monte Carlo simulations shows that by integrating CHP with gasifier to produce biofuels is significantly profitable as compared with only heat and electricity production. But, DME as a potential product shows more economic benefits than methanol. The uncertainty analysis through Monte Carlo simulations shows that the profitable probability of DME as a product in future is also greater than methanol due to higher DME selling price. The uncertainty analysis further shows that prices of DME and methanol with waste biomass prices in future will have a greater impact on the economic performance of the proposed polygeneration process. 

  • 204.
    Salman, Chaudhary Awais
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Naqvi, Muhammad
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Impact of retrofitting existing combined heat and power plant with polygeneration of biomethane: A comparative techno-economic analysis of integrating different gasifiers2017Ingår i: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 152, s. 250-265Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    It is vital to identify and evaluate the optimal gasifier configuration that could be integrated with existing or new combined heat and power (CHP) plants to maximize the utilization of boiler operating capacity during off-peak hours with minimal effect on the boiler performance. This study aims to identify technically and economically most suitable gasification configuration and the reasonable operational limits of a CHP plant when integrated with different types of gasifiers. The selected gasifiers for the study are, (i) indirectly heated dual fluidized bed gasifier (DFBG), (ii) directly heated circulating fluidized bed gasifier (CFBG), and (iii) entrained flow gasifier (EFG). The gasifiers are selected on their ability to produce high-quality syngas from waste refused derived fuel (RDF). The syngas from the gasifiers is utilized to produce biomethane, whereas the heat and power from the CHP plant are consumed to run the gasification process. A detailed techno-economic analysis is performed using both flexible capacity and fixed capacity gasifiers and integrated with the CHP plant at full load. The results reveal that the integration leads to increase in operating time of the boiler for all gasifier configurations. The indirectly heated DFBG shows the largest biomethane production with less impact on the district heat and power production. Extra heat is available for biomethane production when the district heat and biomethane are prioritized, and the electric power is considered as a secondary product. Furthermore, the economic indicators reflect considerable dependency of integrated gasification performance on variable prices of waste biomass and biomethane. 

  • 205.
    Salman, Chaudhary Awais
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Schwede, Sebastian
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Naqvi, M.
    Karlstad University, Sweden.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. KTH.
    Synergistic combination of pyrolysis, anaerobic digestion, and CHP plants.2019Ingår i: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, s. 1323-1329Konferensbidrag (Refereegranskat)
    Abstract [en]

    The anaerobic digestion of biodegradable fraction of municipal solid waste (MSW) is a widely used process for biogas production. However, the biodegradable fraction of MSW also contains lignocellulosic waste which hinders the biogas production if added to the digester in higher quantity. So it needs to be separated from biodegradable waste and sent for alternate treatment, e.g., incineration, landfilling or compositing. Pyrolysis of lignocellulosic waste to produce biochar, syngas, and bio oil is an alternate treatment to consider. Furthermore, there is a reported correlation between the addition of biochar in the digester and higher biogas production. Previously, we coupled the pyrolysis of lignocellulosic waste with anaerobic digestion plant. Pyrolysis produces the biochar and vapors. Biochar was added in the digester to enhance the biomethane production. The vapors produced in the pyrolysis process were converted to biomethane through the catalytic methanation process. The combination gives the overall efficiency of 67%. In this work, we modified the process concept to increase the integration level of these processes. The main issue with the pyrolysis process is its heat required to operate, while some of its downstream processes also generate excess heat. In this study, the pyrolysis of lignocellulosic waste is integrated with an operating combined heat and power (CHP) plant, by using its existing infrastructure for heat transport among different pyrolysis operations. The combustor of the CHP plant provides the heat for drying and pyrolysis while the excess heat is transferred back to the combustor. The biochar produced from pyrolysis is transported back to the digester as an adsorbent. The process simulation results show that the combined efficiency of pyrolysis with CHP plant reached 80%. If the biochar is sent back to the anaerobic digester, the synergetic efficiency of all three processes, i.e., pyrolysis-CHP and anaerobic digestion was obtained at 79.7% as compared with the 67% efficiency when the pyrolysis was only integrated with the anaerobic digestion process.

  • 206.
    Salman, Chaudhary Awais
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Schwede, Sebastian
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. KTH.
    Identification of thermochemical pathways for the energy and nutrient recovery from digested sludge in wastewater treatment plants2019Ingår i: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, s. 1317-1322Konferensbidrag (Refereegranskat)
    Abstract [en]

    There are several restrictions and limitations on the emissions and disposal of materials and pollutants related to wastewater treatment plants (WWTPs) emphasizing improvement of current processes and development of new methods. Process integration is one way to use all fractions of waste for improved efficiency. WWTPs produces sludge which is usually anaerobically digested to produce biogas and a byproduct called digestate. Digestate is an organic material that contains macro and micronutrients such as nitrogen, phosphorous, and potassium and also contains heavy metals. Digestate is mainly used for agricultural applications because of the presence of nutrients. However, digestate also contains energy in the form of carbon and hydrogen which can be harnessed through various processes and integrated with nitrogen recovery process. This study aims to recover the energy and nutrients from digestate through thermochemical treatment processes. Combustion, pyrolysis, and gasification are assessed and compared in this work. An ammonia stripping method is assumed to recover nitrogen from digestate. The thermochemical processes are heat integrated with ammonia stripping through modeling and simulation. Results show that almost half of the energy present in digested sludge is required for its drying. Moreover, nitrogen recovery also requires much energy. The combustion and gasification of digested sludge give better results than pyrolysis. The heat integration becomes feasible when the auxiliary biogas is also burned along with products from the thermochemical treatment of sludge.

  • 207.
    Salman, Chaudhary Awais
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Schwede, Sebastian
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes2017Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 204, s. 1074-1083Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The anaerobic digestion of source-separated organic waste is a mature and increasingly used process for biomethane production. However, the efficient use of different fractions of waste is a big concern in anaerobic digestion plants. This study proposes the use of a new process configuration that couples the anaerobic digestion of biodegradable waste with the pyrolysis of lignocellulosic or green waste. The biochar obtained from pyrolysis was added to a digester as an adsorbent to increase the biomethane content and to support the development of a stable microbial community. In addition, the bio-oil and syngas produced by the pyrolysis process were reformed into syngas and then converted to biomethane via methanation. Modelling and simulations were performed for the proposed novel process. The results showed an approximately 1.2-fold increase in the biomethane volume produced. An overall efficiency of 67% was achieved, whereas the stand-alone anaerobic digestion system had an efficiency of only 52%. The results also indicated a high annual revenue for the integrated process compared to that for an alternative treatment (incineration) of green waste.

  • 208.
    Salman, Chaudhary Awais
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Schwede, Sebastian
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Institute of Technology, Stockholm, Sweden.
    Predictive modelling and simulation of integrated pyrolysis and anaerobic digestion process2017Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, s. 850-857Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Anaerobic co-digestion plant with biodegradable organic feedstock separated from municipal solid waste (MSW) have become a mature technology in past decade. The biogas produced can be upgraded to bio-methane or used in heat and power applications. However, not all the municipal waste fractions such as ligno-cellulose and green waste, are suitable for biodegradation. In this work, the non-biodegradable organic waste named as green waste is investigatedas a potential substrate for a bio refinery conceptbased on combination of pyrolysis and anaerobic digestion.

    The main aim of the study was to evaluate whether or not the anaerobic digestion and pyrolysis process coupling could be beneficial from an energy and exergy point of view. The simulation results shows that the integration of pyrolysis process gives approximately 59% overall efficiency as compared to the 52% for a naerobic digestion stand-alone process. The results also revealed that the pyrolysis of green waste is more beneficial than green waste incineration for heat and power production.

  • 209.
    Salman, Chaudhary Awais
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Schwede, Sebastian
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants2017Ingår i: E3S Web of Conferences, EDP Sciences , 2017, artikel-id 00151Konferensbidrag (Refereegranskat)
    Abstract [en]

    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  • 210.
    Shang, N.
    et al.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Lin, Y.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Ding, Y.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Ye, C.
    College of Electrical Engineering, Zhejiang University, Hangzhou, China.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Nodal market power assessment of flexible demand resources2019Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 235, s. 564-577Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    With the incorporation of higher shares of intermittent renewable energies (RES), more flexible resources are required in power systems to keep load balance. Under some extreme circumstances, the flexible demand resources (FDRs) may have the potential to dominate and obtain excess benefits, preventing other FDRs from participating in the electricity markets. Therefore, it is of great significance to identify the key FDR market power locations and implement some corresponding regulations. However, the relevant researches in power systems focused on the supply side, rather than the demand side. In this paper, a novel nodal market power analysis method is proposed to evaluate the potential influence of FDRs on electricity markets. Firstly, a multi-state model is established to present the multiple power system operation states including the random failures of system components. Then, the nodal market power assessment model is established under each specific state and new indices are proposed to evaluate the nodal market power of FDRs quantitatively. Furthermore, the key FDR nodes in demand side with stronger power in capturing excess revenue are identified. The 24-bus IEEE Reliability Test System is modified to demonstrate the feasibility of the proposed method. The numerical results of the proposed method are capable to display the existence of market power in demand side, and provide some valuable guidance for classification and operation of electricity markets.

  • 211.
    Si, Pengfei
    et al.
    China Southwest Architecture Design & Res Inst Co, China..
    Feng, Ya
    China Southwest Architecture Design & Res Inst Co, China..
    Lv, Yuexia
    Qilu Univ Technol, Sch Mech & Automot Engn, China..
    Rong, Xiangyang
    China Southwest Architecture Design & Res Inst Co, China..
    Pan, Yungang
    China Architecture Design Grp, Beijing, China..
    Liu, Xichen
    China Southwest Architecture Design & Res Inst Co, China..
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    An optimization method applied to active solar energy systems for buildings in cold plateau areas - The case of Lhasa2017Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 194, s. 487-498Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solar energy for building applications may significantly reduce the conventional energy consumption and the related carbon dioxide emissions. The comprehensive utilization of integrated solar thermal and photovoltaic systems is undoubtedly a subject of interest. In the present paper, an optimization model was proposed for integrated solar energy systems, aiming to figure out the optimal utilization and economical efficiency of solar energy resources for buildings in cold plateau areas. A case study in Lhasa city was further carried out in order to evaluate the energy and economic performance of the developed model. The results indicated that solar photovoltaic systems are preferred than solar thermal systems for typical office buildings in cold plateau areas with rich solar energy resources. In addition, a sensitivity analysis was performed to investigate the influences of financial subsidies and commercial electricity prices on the system economical performance. Furthermore, life cycle assessment was conducted to compare and analyze the performances of an optimization system and a conventional system. (C) 2016 Elsevier Ltd. All rights reserved.

  • 212.
    Song, Han
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Nordlander, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Modeling and optimization of a regional waste-to-energy system: A case study in central Sweden2013Ingår i: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 33, nr 5, s. 1315-1316Artikel i tidskrift (Övrigt vetenskapligt)
  • 213.
    Starfelt, Fredrik
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Daianova, Lilia
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinuye
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Thorin, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Increased renewable electricity production in combined heat and power plants by introducing ethanol production2009Konferensbidrag (Refereegranskat)
    Abstract [en]

    The development towards high energy efficiency and low environmental impact by humaninteractions, has led to a change in many levels of society. Due to the introduction of penalties oncarbon dioxide emissions and other economic instruments, the energy industry is striving towardsenergy efficiency improvement and climate mitigation by switching from fossil to renewablefuels. Biomass-based combined heat and power (CHP) plants connected to district heatingnetworks have a need to find uses for excess heat to produce electricity during summer when theheat demand is low. On the other hand, the transport sector is contributing substantially to theincreased CO2 emissions, which have to be reduced. One promising alternative to address the twochallenging issues is the integration of vehicle fuel production with biomass based CHP plants. Inthis paper, the configuration and operation profits in terms of electricity, heat and ethanol fuelfrom cellulosic biomass are presented. A case study of a commercial small-scale CHP plant hasbeen carried out using simulation and modeling tools. The results clearly show that electricityproduction can be increased when CHP production is integrated with cellulosic ethanolproduction. The findings presented also show that the economical benefits of the energy systemcan be realized with near-term commercially available technology

  • 214.
    Starfelt, Fredrik
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Daianova, Lilia
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Thorin, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    The impact of lignocellulosic ethanol yields in polygeneration with district heating: A case study2012Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 92, s. 791-799Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The development towards high energy efficiency and low environmental impact from human interactions

    has led to changes at many levels of society. As a result of the introduction of penalties on carbon

    dioxide emissions and other economic instruments, the energy industry is striving to improve energy

    efficiency and climate mitigation by switching from fossil fuels to renewable fuels. Biomass-based combined

    heat and power (CHP) plants connected to district heating networks have a need to find uses for the

    excess heat they produce in summer when the heat demand is low. On the other hand, the transport sector

    makes a substantial contribution to the increasing CO

    2

    emissions, which have to be reduced. One

    promising alternative to address these challenging issues is the integration of vehicle fuel production

    with biomass-based CHP plants. This paper presents the configuration and operating profits in terms

    of electricity, heat and ethanol fuel from cellulosic biomass. A case study of a commercial small scale

    CHP plant was conducted using simulation and modeling tools. The results clearly show that electricity

    production can be increased when CHP production is integrated with cellulosic ethanol production. The

    findings also show that the economic benefits of the energy system can be realized with near-term commercially

    available technology, and that the benefits do not rely solely on ethanol yields.

  • 215.
    Starfelt, Fredrik
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Thorin, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Performance evaluation of adding ethanol production into an existing combined heat and power plant2010Ingår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 101, nr 2, s. 613-618Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, the configuration and performance of a polygeneration system are studied by modelling the integration of a lignocellulosic wood-to-ethanol process with an existing combined heat and power (CHP) plant. Data from actual plants are applied to validate the simulation models. The integrated polygeneration system reaches a total efficiency of 50%, meeting the heating load in the district heating system. Excess heat from the ethanol production plant supplies 7.9MWto the district heating system, accounting for 17.5% of the heat supply at full heating load. The simulation results show that the production of ethanol from woody biomass is more efficient when integrated with a CHP plant compared to a stand-alone production plant. The total biomass consumption is reduced by 13.9% while producing the same amounts of heat, electricity and ethanol fuel as in the stand-alone configurations. The results showed that another feature of the integrated polygeneration system is the longer annual operating period compared to existing cogeneration. Thus, the renewable electricity production is increased by 2.7% per year.

  • 216.
    Starfelt, Fredrik
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, J.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Case study of energy systems with gas turbine cogeneration technology for an eco-industrial park2008Ingår i: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 32, nr 12, s. 1128-1135Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Eco-industrial parks (EIP) are clusters of industry corporations that collaborate with reusing waste and energy-efficient use of resources with no or minor impact on the environment. This paper presents a case study that examines the feasibility of using gas turbine technology in one industrial park, located in the Dongguan city of the Guangdong province in China. A model of a gas turbine-based combined heat and power (CHP) plant with a heat recovery steam generator for absorption cooling was developed and simulated. A steam-injected gas turbine has been selected in the system to increase electricity production and to generate steam. The study includes performance analysis of the cogeneration plant in terms of thermal efficiency, cost estimation, and greenhouse gas emission. The gas turbine-based cogeneration system has been compared with a baseline reference case that is defined as if all the energy to the industrial park is supplied from the local electricity grid. The results show that the gas turbine-based cogeneration system can reach a total efficiency of 58% and reduce CO2 emissions with 12 700 tons per year. A sensitivity analysis on the costs of the system has also been made based on fuel costs and the interest rate, which shows that the investigated system is economically profitable at natural gas prices below 4.4 RMB m-3 with fixed electricity prices and at electricity prices above 736 RMB MWh-1 with fixed natural gas prices. The sensitivity analysis based on the interest rate showed that the proposed system is economically feasible with interest rates up to 16%.

  • 217.
    Starfelt, Fredrik
    et al.
    Mälardalens högskola, Institutionen för samhällsteknik. Process and Resource Optimization.
    Yan, Jinyue
    Mälardalens högskola, Institutionen för samhällsteknik. Royal Institute of Technology, Stockholm, Sweden.
    Case Study of Energy Systems with Gas Turbine Cogeneration Technology for an Eco-Industrial Park2007Ingår i: 3rd International Green Energy Conference: Proceedings of IGEC-III, 2007, 2007, s. 509-515Konferensbidrag (Refereegranskat)
    Abstract [en]

    Eco-industrial parks (EIP) are clusters of industry corporations that collaborate with reusing waste and energyefficient use of resources with no or minor impact on the environment. This paper presents a case study that examines the feasibility of using gas turbine technology in one industrial park, located in Dongguan city of Guangdong province in China.

    A model of a gas turbine based combined heat and power (CHP) plant with a heat recovery steam generator (HRSG) for absorption cooling was developed and simulated. A steam-injected gas turbine (STIG) has been selected in the system to increase electricity production while generating steam. The study includes performance analysis of the cogeneration plant in terms of thermal efficiency, cost estimation, and greenhouse gas emission. The gas turbine based cogeneration system has been compared to a baseline reference case that is defined as if all energy to the industrial park is supplied from the local electricity grid. The results show that the gas turbine based cogeneration system can reach a thermal efficiency of 58 % and reduce the CO2 emissions with 12,700 tons per year. A sensitivity analysis on the costs of the system has also been made based on fuel costs and interest rate which shows that the investigated system is economically profitable at natural gas prices below 4.4

    yuan/m³ with fixed electricity prices and at electricity prices above 736 yuan/kWh with fixed natural gas prices. The sensitivity analysis based on interest rate showed that the proposed system is economically feasible with interest rates up to 16 %.

  • 218.
    Stigson, Peter
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Jinhyue, Yan
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Improving policy making through government-industry policy learning: the case of a novel Swedish policy framework2009Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 86, nr 4, s. 399-406Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Climate change poses an unprecedented challenge for policy makers. This paper analyzes how industry sector policy expertise can contribute to improved policy making processes. Previous research has identified that policy making benefit by including non-governmental policy analysts in learning processes. Recent climate and energy policy developments, including policy amendments and the introduction of new initiatives, have rendered current policy regimes as novel both to governments and the industry. This increases business investment risk perceptions and may thus reduce the effectiveness and efficiency of the policy framework. In order to explore how government-industry policy learning can improve policy making in this context, this article studied the Swedish case. A literature survey analyzed how policy learning had been previously addressed, indentifying that the current situation regarding novel policies had been overlooked. Interviews provided how industrial actors view Swedish policy implementation processes and participatory aspects thereof. The authors conclude that an increased involvement of the industry sector in policy design and management processes can be an important measure to improve the effectiveness and efficiency of climate and energy policies.

  • 219.
    Stigson, Peter
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik.
    Dotzauer, Erik
    KTH Royal Institute of Technology.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Climate and Energy Policy Evaluation in Terms of Relative Industrial Performance and Competitiveness2009Ingår i: International Journal of Green Energy, ISSN 1543-5075, E-ISSN 1543-5083, Vol. 6, nr 5, s. 450-465Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Due to differences in greenhouse-gas abatement costs within the industrial sectors, there is an ongoing discussion on potential negative competitive effects of climate and energy policies. This article argues that policymakers must acknowledge the relative performance of industrial operations parallel to the competitors, the compulsoriness of policies, and the harmonization of policies accordingly. To this end, the authors suggest a tool aimed for robust participatory policy evaluations at decision-maker levels. The tool promotes policy learning, transparency, and consensus building, hence contributing to more effective and efficient policy design and management process. The tool is exemplified in a Swedish context.

  • 220.
    Stigson, Peter
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling. KTH, Sweden.
    Negotiated Agreements as a vehicle for Policy Learning2010Ingår i: International Journal of Global Warming, ISSN 1758-2091, Vol. 2, nr 2, s. 97-117Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The paper evaluates to which extent that different designs of Voluntary Agreements (VAs) can work as catalysts for Policy Learning (PL) and thus contribute to improved policy design and management processes. Through a literature study, it is found that VAs in the form of Negotiated Agreements (NAs) are more successful in promoting PL than other types of VAs that have less focus on the participatory aspect of the policy processes. The paper contributes to the existing VA policy literature through highlighting the predominately overseen learning values of implementing NA as well as providing policy recommendations on VA learning processes

  • 221.
    Stigson, Peter
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Yan, Jinyue
    Policy evaluation according to relative industrial performance and competitiveness2008Konferensbidrag (Refereegranskat)
  • 222.
    Stigson, Peter
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Voluntary agreements as a vehicle for policy learning2009Ingår i: Proceedings of the Global Conference on Global Warming 2009 (GCGW-09), Istanbul Turkey, 2009, 2009Konferensbidrag (Refereegranskat)
    Abstract [en]

    Present literature identifies policy learning (PL) as contributing to effective and efficient policy design and management processes. Similarly, the participatory nature of specific voluntary agreements (VAs) has been identified as contributing to increased policy framework effectiveness and efficiency. Against this background, this study aims to prove the hypothesis that an increased attention to the possibilities for PL that exists in the VA policy framework can contribute to a better design of VAs, as well as potentially providing more positive evaluations thereof if acknowledging said learning. Hence, the study analyses to which extent that the literature acknowledges VAs’ learning potentials, and evaluates which policy recommendations that can be provided to increase the potential for PL. The study finds that VAs in the form of negotiated agreements are more successful in promoting PL than other types of VAs that have less focus on the participatory aspect of the policy processes. The study also identifies that the policy cycle of negotiated agreements includes four different stages of learning possibilities. As to facilitate that these stages can be fruitfully explored, the study presents recommended policy design and management elements that can increase learning. To this end, the study does not aim to provide recommendations for the entire VA process, as suggestions focus specifically on the learning aspects. The paper contributes to the existing VA policy literature through highlighting the predominately overseen learning values of implementing negotiated agreements as well as providing policy recommendations on VA learning processes.

  • 223.
    Tan, S. T.
    et al.
    Process System Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia.
    Hashim, H.
    Process System Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia.
    Lee, C. T.
    Process System Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia.
    Lim, J. S.
    Process System Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia.
    Ho, W. S.
    Process System Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik. Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    SMART: An Integrated Planning and Decision Support Tool for Solid Waste Management2014Ingår i: Computer Aided Chemical Engineering, ISSN 1570-7946, Vol. 33, s. 271-276Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solid waste management (SWM) system combined waste streams, waste collection, treatment and disposal methods are critically important to a regional, to achieve environmental economic and societal benefits. Decision-makers often have to rely on optimization models to examine a cost effective, environmentally sound waste management alternative. This paper presents a new systematic framework for long term effective planning and scheduling of SWM. This framework has been converted into software called Solid Waste Management Resource Recovery Tool (SMART). SMART is a first-of-a-kind SWM tool to facilitate the tradeoffs analysis between technical, economical, and environmental at national, regional, state, province, or community level. This simple tool is useful for decision makers for the selection of MSW technology including incineration, landfill, composting and recycling are while minimising the costs and meet CO2 reductions target. The developed tool was applied in Iskandar Malaysia as a case study.

  • 224.
    Tan, S. T.
    et al.
    Universiti Teknologi Malaysia, Malaysia.
    Hashim, H.
    Universiti Teknologi Malaysia, Malaysia.
    Lim, J. S.
    Universiti Teknologi Malaysia, Malaysia.
    Ho, W. S.
    Universiti Teknologi Malaysia, Malaysia.
    Lee, C. T.
    Universiti Teknologi Malaysia, Malaysia.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia2014Ingår i: Applied Energy, ISSN 0306-2619, Vol. 136, s. 797-804Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ineffective waste management that involves dumping of waste in landfills may degrade valuable land resources and emit methane gas (CH4), a more potent greenhouse gas than carbon dioxide (CO2). The incineration of waste also emits polluted chemicals such as dioxin and particle. Therefore, from a solid waste management perspective, both landfilling and incineration practices pose challenges to the development of a green and sustainable future. Waste-to-energy (WtE) has become a promising strategy catering to these issues because the utilisation of waste reduces the amount of landfilled waste (overcoming land resource issues) while increasing renewable energy production. The goal of this paper is to evaluate the energy and carbon reduction potential in Malaysia for various WtE strategies for municipal solid waste (MSW). The material properties of the MSW, its energy conversion potential and subsequent greenhouse gases (GHG) emissions are analysed based on the chemical compositions and biogenic carbon fractions of the waste. The GHG emission reduction potential is also calculated by considering fossil fuel displacement and CH4 avoidance from landfilling. In this paper, five different scenarios are analysed with results indicating a integration of landfill gas (LFG) recovery systems and waste incinerator as the major and minor WtE strategies shows the highest economical benefit with optimal GHG mitigation and energy potential. Sensitivity analysis on the effect of moisture content of MSW towards energy potential and GHG emissions are performed. These evaluations of WtE strategies provides valuable insights for policy decision in MSW management practices with cost effective, energy benefit, environmental protection.

  • 225.
    Tan, Sie Ting
    et al.
    Univ Teknol Malaysia, Proc Syst Engn Ctr PROSPECT, Fac Chem Engn, Utm Skudai 81310, Johor, Malaysia..
    Hashim, Haslenda
    Univ Teknol Malaysia, Proc Syst Engn Ctr PROSPECT, Fac Chem Engn, Utm Skudai 81310, Johor, Malaysia..
    Lee, Chew Tin
    Univ Teknol Malaysia, Proc Syst Engn Ctr PROSPECT, Fac Chem Engn, Utm Skudai 81310, Johor, Malaysia..
    Lim, Jeng Shiun
    Univ Teknol Malaysia, Proc Syst Engn Ctr PROSPECT, Fac Chem Engn, Utm Skudai 81310, Johor, Malaysia..
    Ho, Wai Shin
    Univ Teknol Malaysia, Proc Syst Engn Ctr PROSPECT, Fac Chem Engn, Utm Skudai 81310, Johor, Malaysia..
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    SMART: An Integrated Planning and Decision Support Tool for Solid Waste Management2014Ingår i: 24TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A AND B / [ed] Klemes, JJ Varbanov, PS Liew, PY, ELSEVIER SCIENCE BV , 2014, s. 271-276Konferensbidrag (Refereegranskat)
    Abstract [en]

    Solid waste management (SWM) system combined waste streams, waste collection, treatment and disposal methods are critically important to a regional, to achieve environmental economic and societal benefits. Decision-makers often have to rely on optimization models to examine a cost effective, environmentally sound waste management alternative. This paper presents a new systematic framework for long term effective planning and scheduling of SWM. This framework has been converted into software called Solid Waste Management Resource Recovery Tool (SMART). SMART is a first-of-a-kind SWM tool to facilitate the tradeoffs analysis between technical, economical, and environmental at national, regional, state, province, or community level. This simple tool is useful for decision makers for the selection of MSW technology including incineration, landfill, composting and recycling are while minimising the costs and meet CO2 reductions target. The developed tool was applied in Iskandar Malaysia as a case study.

  • 226.
    Tan, Sieting
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Hashim, H.
    Universiti Teknologi Malaysia, Skudai, Johor, Malaysia .
    Lee, C.
    Universiti Teknologi Malaysia, Skudai, Johor, Malaysia .
    Taib, M. R.
    Universiti Teknologi Malaysia, Skudai, Johor, Malaysia .
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Economical and environmental impact of waste-T o-energy (WTE) alternatives for waste incineration, landfill and anaerobic digestion2014Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 61, s. 704-708Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper aims to evaluate the economical and environmental impact of waste incineration, landfill gas recovery system (LFGRS), and anaerobic digestion (AD) for municipal solid waste (MSW) management in Malaysia and subsequently assess the potential of each technology for energy uses and carbon reduction. An existing landfill, Taman Beringin, in Malaysia is selected as the case study, which is one of the largest national sites for waste management. The results present that incineration is the most economical profitable and climate-friendly WTE alternative as compared to an conventional landfill. With the production of 1430 MWh/d of heat and 480 MWh/d of electricity from 1000 t/d of MSW input, waste incineration is able to reach 287% of profit increment or 450 TUSD/d and 2250 tCO2/d of carbon avoidance by fossil fuel replacement as compared to baseline.

  • 227.
    Tan, Sieting
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Univ Teknol Malaysia, Johor, Malaysia.
    Yang, Jin
    Beijing Normal Univ, Peoples R China.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Development of the Low-carbon City Indicator (LCCI) Framework2015Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, s. 2516-2522Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper proposes a 3-layer top-down indicator framework for the evaluation, implementation and standardization of low carbon cities (LCC). Layer 1 accounts for city carbon emission related indicators. Layer 2 expands the scope of layer 1 and probes into factors closely related to carbon emissions. Layer 3 focus on the implementation pathways. Specifically, we laid the focus on Layer 2 in this paper. An indicator system for the evaluation of LCC was established from the perspectives of economic, energy pattern, technology, social and living, carbon & environment, urban accessibility and waste. A comprehensive evaluation method was employed for city ranking in terms of low carbon level. The framework was then applied to 10 global cities to rank their low carbon levels. Results showed that the low carbon level of cities in Europe is much higher than that in Asia (Beijing) and America (New York) due to better environmental performance and infrastructure supports caused by less human activities. 

  • 228.
    Tan, Sieting
    et al.
    Univ Teknol Malaysia,, Johor, Malaysia.; Malardalen Univ, Sch Sustainable Dev Soc & Technol, SE-72123 Vasteras, Sweden..
    Yang, Jin
    China Univ Geosci, Peoples R China.;.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Lee, Chewtin
    Univ Teknol Malaysia, Johor, Malaysia..
    Hashim, Haslenda
    Univ Teknol Malaysia, Johor, Malaysia..
    Chen, Bin
    Beijing Normal Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100875, Peoples R China..
    A holistic low carbon city indicator framework for sustainable development2017Ingår i: APPLIED ENERGY, ISSN 0306-2619, Vol. 185, s. 1919-1930Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Many cities are pursuing the low-carbon practices to reduce CO2 and other environmental emissions. However, it is still unclear which aspects a low-carbon city (LCC) covers and how to quantify and certify its low carbon level. In this paper, an indicator framework for the evaluation of LCC was established from the perspectives of Economic, Energy pattern, Social and Living, Carbon and Environment, Urban mobility, Solid waste, and Water. A comprehensive evaluation method was employed for LCC ranking by using the entropy weighting factor method. The benchmark values for LCC certification were also identified. The framework was applied to 10 global cities to rank their low-carbon levels. The comparison of cities at different levels of economic, social, and environmental development enhances the holistic of the study. The results showed that Stockholm, Vancouver, and Sydney ranked higher than the benchmark value, indicating these cities achieved a high level of low-carbon development. Sao Paulo, London, and Mexico City are still in the slow transition towards LCC. Beijing and New York each has much lower LCC level than the benchmark value due to the poor environmental performance and infrastructure supports caused by intensive human activities. The proposed indicator system serves as a guideline for the standardization of LCC and further identifies the key aspects of low-carbon management for different cities. 

  • 229.
    Tan, Y.
    et al.
    Tianjin University Tianjin, China.
    Li, X.
    Tianjin University Tianjin, China.
    Zhao, L.
    Tianjin University Tianjin, China.
    Li, H.
    Royal Institute of Technology, Stockholm, Sweden.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yu, Z.
    University of Stavanger, Stavanger, Norway.
    Study on utilization of waste heat in cement plant2014Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 61, s. 455-458Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper discusses three options for waste heat recovery in cement plant, they are dual-pressure power generation system, post-combustion capture system using MEA and the combined one. Model of power generation system was developed. Technical analysis was made from aspects of power generating capacity and CO2 capture ratio. In addition, economic evaluation was conducted to assess the performance of three systems targeting on higher Net Present Value (NPV). Variation of economic parameters were considered like carbon credit (10-90$/ton) and price of electricity (0.06-0.18$/kWh). Optimal option can be selected for waste heat utilization based on economic evaluation results in this paper.

  • 230.
    Tan, Y.
    et al.
    Royal Institute of Technology, Stockholm, Sweden.
    Nookuea, Worrada
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Institute of Technology, Stockholm, Sweden.
    Cryogenic technology for biogas upgrading combined with carbon capture-a review of systems and property impacts2017Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, s. 3741-3746Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    CO2 makes a major contribution to the climate change, and biomass renewable energy and carbon capture and storage (CCS) can be deployed to mitigate the CO2 emission. Cryogenic process for biogas upgrading combined with carbon capture is one of the most promising technologies. This paper reviewed the state-of-the-art of cryogenic systems for biogas upgrading combined with carbon capture, and introduced the status and progress of property impacts on the cryogenic systems with emphasize on phase equilibrium. The existing cryogenic systems can be classified as flash liquefaction system, distillation system, and liquefaction combined with desublimation system. The flash liquefaction system produces biomethane and CO2 in lower purity than the other two systems. Thermodynamic optimization on the flash liquefaction system and liquefaction combined with desublimation system should be done further, and comprehensive comparison between three cryogenic systems needs to be carried out. As to the phase equilibrium, PR EOS is safe to be used in predicting VLE and SVLE with an independent thermodynamic model describing the fugacity of the solid phase. However, the impacts of binary mixing parameter, different EOS models and mixing rules, on the performance of the cryogenic system need to be identified in the future. 

  • 231.
    Tan, Y.
    et al.
    School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Nookuea, Worrada
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Evaluation of viscosity and thermal conductivity models for CO2 mixtures applied in CO2 cryogenic process in carbon capture and storage (CCS)2017Ingår i: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 123, s. 721-733Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The cryogenic process is used for CO2 purification in oxy-fuel combustion power plant, and multi-stream heat exchanger is one of the most important components. Viscosity and thermal conductivity are key transport properties in the design of plate-fin multi-stream heat exchanger. It is necessary to evaluate the impacts of viscosity and thermal conductivity models on the design of the heat exchanger. In this paper, different viscosity models and thermal conductivity models for CO2 mixtures with non-condensable impurities were first evaluated separately by comparing the calculated results with experimental data. Results show that for viscosity, the absolute average deviation of KRW model is the smallest, which is 1.3%. For thermal conductivity, model developed by Ely and Hanley, with absolute average deviation of 3.5%, is recommended. The impact of property models on the design of plate-fin multi-stream heat exchanger was also analyzed. The thermal conductivity model has a noticeable impact on the plate-fin multi-stream heat exchanger design, and the deviation in design size of heat exchanger by using different thermal conductivity models may reach up to 7.5%. The future work on how to improve the property models was discussed. © 2017 Elsevier Ltd

  • 232. Tan, Y.
    et al.
    Nookuea, Worrada
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, China.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Impacts of thermos-physical properties on plate-fin multi-stream heat exchanger design in cryogenic process for CO2 capture2019Ingår i: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 149, s. 1445-1453Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Oxy-fuel combustion is one of the most promising technologies for CO2 capture for power plants. In oxy-fuel combustion plants, cryogenic process can be applied for CO2 purification because the main impurities in flue gas are non-condensable gases. The multi-stream plate-fin heat exchanger is one of the most important components in the CO2 cryogenic system. In-depth understanding of the impacts of property on the heat exchanger is of importance for appropriate design. In order to investigate the impacts of properties on sizing the heat exchanger and to further identify the key properties to be prioritized for the property model development, this paper presented the design procedure for the plate-fin multi-stream heat exchanger for the CO2 cryogenic process. Sensitivity study was conducted to analyze the impacts of thermos-physical properties including density, viscosity, heat capacity and thermal conductivity. The results show that thermal conductivity has the most significant impact and hence, developing a more accurate thermal conductivity model is more important for the heat exchanger design. In addition, even though viscosity has less significant impact compared to other properties, the larger deviation range of current viscosity models may lead to higher uncertainties in volume design and annual capital cost of heat exchanger. 

  • 233.
    Tan, Y.
    et al.
    Royal Institute of Technology, Stockholm, Sweden.
    Nookuea, Worrada
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Property impacts on Carbon Capture and Storage (CCS) processes: A review2016Ingår i: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 118, s. 204-222Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The knowledge of thermodynamic and transport properties of CO2-mixtures is important for designing and operating different processes in carbon capture and storage systems. A literature survey was conducted to review the impact of uncertainty in thermos-physical properties on the design and operation of components and processes involved in CO2 capture, conditioning, transport and storage. According to the existing studies on property impacts, liquid phase viscosity and diffusivity as well as gas phase diffusivity significantly impact the process simulation and absorber design for chemical absorption. Moreover, the phase equilibrium is important for regenerating energy estimation. For CO2 compression and pumping processes, thermos-physical properties have more obvious impacts on pumps than on compressors. Heat capacity, density, enthalpy and entropy are the most important properties in the pumping process, whereas the compression process is more sensitive to heat capacity and compressibility. In the condensation and liquefaction process, the impacts of density, enthalpy and entropy are low on heat exchangers. For the transport process, existing studies mainly focused on property impacts on the performance of pipeline steady flow processes. Among the properties, density and heat capacity are most important. In the storage process, density and viscosity have received the most attention in property impact studies and were regarded as the most important properties in terms of storage capacity and enhanced oil recovery rate. However, for physical absorption, physical adsorption and membrane separation, there has been a knowledge gap about the property impact. In addition, due to the lack of experimental data and process complexity, little information is available about the influence of liquid phase properties on the design of the absorber and desorber for chemical absorption process. In the CO2 conditioning process, knowledge of the impacts of properties beyond density and enthalpy is insufficient. In the transport process, greater attention should focus on property impacts on transient transport processes and ship transport systems. In the storage process, additional research is required on the dispersion process in enhanced oil recovery and the dissolution process in ocean and saline aquifer storage.

  • 234.
    Tan, Yuting
    et al.
    Royal Institute of Technology, Sweden.
    Nookuea, Worrada
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Institute of Technology, Sweden.
    Property Impacts on Plate-fin Multi-stream Heat Exchanger (Cold Box) Design in CO2Cryogenic Process: Part I. Heat Exchanger Modeling and Sensitivity Study2017Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 05, s. 4587-4594Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The multi-streamplate-finheat exchanger is one of the most important componentsin the CO2 cryogenic system. Appropriate design methodology and in-depth analysis of property on the heat exchanger are of importance. This paper, as part I of the two-paper series, presented the design procedure for the multi-stream plate-fin heat exchangerin CO2 cryogenic process. Sensitivity study was also conducted to analyze the impacts of thermos-physical properties including density, viscosity, heat capacity and thermal conductivity.

    The results show that thermal conductivity has the most significant impact and it should be prioritized to develop a more accurate thermal conductivity model for the heat exchanger design. In addition, viscosity has least significant impact but the higher uncertainty range of viscosity may lead to a higher possible deviation in volume design.

  • 235.
    Tan, Yuting
    et al.
    Royal Inst Technol, Sweden.
    Nookuea, Worrada
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Zhao, Li
    Tianjin Univ, Peoples R China.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Inst Technol, Sweden.
    Property impacts on performance of CO2 pipeline transport2015Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, s. 2261-2267Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Carbon Capture and Storage (CCS) is one of the most potential technologies to mitigate climate change. Using pipelines to transport CO2 from emission sources to storage sites is one of common and mature technologies. The design and operation of pipeline transport process requires careful considerations of thermo-physical properties. This paper studied the impact of properties, including density, viscosity, thermal conductivity and heat capacity, on the performance of CO2 pipeline transport. The pressure loss and temperature drop in steady state were calculated by using homogenous friction model and Sukhof temperature drop theory, respectively. The results of sensitivity study show that over-estimating density and viscosity increases the pressure loss while under-estimating of density and viscosity decreases it. Over-estimating density and heat capacity leads to lower temperature drop while underestimating of density and heat capacity result in higher temperature drop. This study suggests that the accuracy of property models for example, more accurate density model, should be developed for the CO2 transport design. 

  • 236.
    Thorin, Eva
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Li, Hailong
    Chemical Engineering and Technology/Energy Processes, Royal Institute of Technology.
    Yan, Jinuye
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    On thermophysical properties of CO2/H2O mixtures with impurities in oxyfuel CCS systems2009Ingår i: IOP Conf. Series: Earth and Environmental Science 6 (2009), 2009Konferensbidrag (Övrigt vetenskapligt)
  • 237.
    Thorin, Eva
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Nordlander, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Lindmark, Johan
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dahlquist, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Bel Fdhila, Rebei
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    MODELING OF THE BIOGAS PRODUCTION PROCESS- A REVIEW2012Konferensbidrag (Refereegranskat)
    Abstract [en]

    Production of biogas by digestion of organic wastes and other feedstock is one of the important technical solutions that contribute to the transform of the energy system from being fossil fuel dependent to renewable energy originated. To be fully commercial and competitive, the production of biogas needs to be further developed and optimized based on the technical, economic and environmental aspects. Thus, comprehensive understanding of fluid dynamics and microbial reactions in the digestion process is necessary to accurately and robustly model, predict and control the biogas production.

    In this paper possible pathways for modeling the biogas reactor is discussed based on previous work on anaerobic digestion modeling and modeling of the fluid flow in reactors. Important parameters for modeling biogas production, with a focus on processes using waste as feedstock, are considered. Identification of knowledge gaps for the modeling of the biogas process is performed and how to overcome the obstacles is addressed.

  • 238.
    Thorin, Eva
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Sandberg, Jan
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. KTH, Sweden.
    Combined Heat and Power2015Ingår i: Handbook of Clean Energy Systems, John Wiley & Sons, 2015Kapitel i bok, del av antologi (Refereegranskat)
  • 239.
    Tian, Yishui
    et al.
    Chinese Academy of Agricultural Engineering,China.
    Zhao, Lixin
    Chinese Academy of Agricultural Engineering,China.
    Meng, Haibo
    Chinese Academy of Agricultural Engineering,China.
    Sun, Liying
    Chinese Academy of Agricultural Engineering,China.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Estimation of un-used land potential for biofuels development in (the) People’s Republic of China2009Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 86, nr ISSUE SUPPL. 1, s. S77-S85Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents the current status of biofuel development and estimates the potential of un-used land for biofuel development. The potential of crops including cassava, sweet potato, sweet sorghum, sugarcane, sugar beet and Jerusalem artichoke were assessed and discussed for different regions considering the geographical conditions and features of agricultural production. If reserved land resources are explored together with substitute planting implemented and unit area yield improved, potential production of bio-ethanol fuel will be 22 million tons in 2020. The study also recommends the use of winter idle lands for rapeseed plantation for biofuel production. The potential for production of biodiesel by rapeseed and cottonseed can reach to 3.59 million tons.

  • 240.
    Tian, Z.
    et al.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Hao, Y.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Li, W.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Campana, Pietro Elia
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. KTH, Sweden.
    Li, H.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. KTH, Sweden.
    Jin, H.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Integrating concentrating PVs in biogas upgrading2018Ingår i: Energy Procedia, Elsevier Ltd , 2018, s. 598-603Konferensbidrag (Refereegranskat)
    Abstract [en]

    Biogas produced from anaerobic digestion processes has been considered as an important alternative to natural gas and plays a key role in the emerging market for renewable energy. By removing CO2, biogas can be upgraded to vehicle fuel. Chemical absorption is one of the widely used upgrading technologies, which advantages include high purity and low loss of biomethane. However, chemical absorption usually suffers from the high consumption of thermal energy, which is required by the regeneration of the solvent. Aiming at achieving a more sustainable and efficient biomethane production, this work proposed a novel system, which integrate concentrating photovoltaic/thermal hybrid (C-PV/T) in the upgrading of biogas. Due to the ability to produce electricity and heat simultaneously and efficiently, C-PV/T can provide the demands of both the electricity and heat. By doing dynamic simulation of the energy production of C-PV/T, the technical feasibility of such a system is analyzed. Based on the design to meet the heat demand of solvent regeneration, without energy storage, the produced heat can cover 17% of the heat demand of the solvent regeneration, but 51.1% of the electricity demand; meanwhile, 140.3 MWh excess electricity can be sold for one year.

  • 241.
    Vassileva, Iana
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Bartusch, Cajsa
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dahlquist, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling. KTH, Stockholm.
    Interactions between power producers and customers2009Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the future we can expect new types of more interactive communications between singlecustomers and groups of customers towards the energy market companies. These can be developas a result of the introduction of individual metering of electricity, and then utilize thisinformation both for information to the customers, as well as different kind of control of thepower system. The information can be through interactive displays where instant and aggregatedenergy and power utilization is presented, but also with a possibility to react to differences inprices by e.g. shutting of some power consumers to avoid high costs. Different types ofinteractions are discussed in the paper.

  • 242.
    Vujanović, M.
    et al.
    University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia.
    Wang, Q.
    Xi’an Jiaotong University, Xi’an, China.
    Mohsen, M.
    American International College, Saad Al Abdullah, Kuwait.
    Duić, N.
    University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Institute of Technology, Stockholm, Sweden.
    Special issue of applied energy dedicated to SDEWES conferences 2018: Sustainable energy technologies and environmental impacts of energy systems2019Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 256, artikel-id 113919Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This special issue of Applied Energy contains scientific articles presented at the 1st Latin American edition of the SDEWES conference conducted in 2018 in Rio de Janeiro, the 3rd South East Europe edition of SDEWES conference conducted in 2018 in Novi Sad, and the 13th SDEWES conference conducted in 2018 in Palermo. The SDEWES conferences are international scientific conferences that gather scientists and professionals from the field of sustainable development. These conferences have brought together 770 scientists, researchers, and experts in the field of sustainable development of energy and environment. This editorial is based upon 20 papers selected from among 700 contributions presented at the SDEWES conferences in 2018. The topics covered in this special issue include the advances in research and development in the energy sytems and technologies and its environmental impact within the framework of sustainable development. 

  • 243.
    Wang, C.
    et al.
    Luleå University of Technology, Luleå, Sweden.
    Larsson, M.
    MEFOS - Metallurgical Research Institute AB, Luleå, Sweden.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dahl, J.
    Luleå University of Technology, Luleå, Sweden.
    CO2 emission reduction in the steel industry by using emission trading programs2007Ingår i: International Journal of Green Energy, ISSN 1543-5075, E-ISSN 1543-5083, Vol. 4, nr 5, s. 505-518Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The implementation of the EU Emission Trading Scheme ( ETS) started on January 1(st) 2005 according to national plans for allocating emissions rights. The steel industry is one of the industrial sectors included in this scheme. The objective of this paper is to investigate and evaluate the optimum solution( s) for European steel plants to meet their emission allowance with low reduction cost. An optimization model based on a Swedish steel plant is developed and used. Three scenarios were created in the model, i. e., internal changes within the steel plant, EU ETS, and the Kyoto Protocol's clean development mechanism ( CDM). For the last scenario, China was selected as a country of the non- Annex I Party for the emission trading by CDM. The modeling results show that the studied plant will face an emission gap between allowed and calculated emissions in the near future. Compared to EU ETS, the implementation of CDM projects will make the plant reduce CO2 emissions at a lower cost. The internal changes within the plant will also play an important role for the solution of low abatement cost. The model developed could serve as a benchmark for the future emission trading simulation's purpose within the European steel industry.

  • 244.
    Wang, C. S.
    et al.
    Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 30072, Peoples R China..
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Inst Technol, Sch Chem Sci & Engn, S-10044 Stockholm, Sweden..
    Jia, H. J.
    Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 30072, Peoples R China..
    Wu, J. Z.
    Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, Wales..
    Yu, J. C.
    State Grid Tianjin Elect Power Co, Tianjin 300010, Peoples R China..
    Xu, T.
    Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 30072, Peoples R China..
    Zhang, Y.
    Malardalen Univ, Sch Sustainable Dev Soc & Technol, S-72123 Vasteras, Sweden..
    Renewable and distributed energy integration with mini/microgrids2019Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 237, s. 920-923Artikel i tidskrift (Övrigt vetenskapligt)
  • 245.
    Wang, C.
    et al.
    Tianjin University, Tianjin, China.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. KTH, Stockholm, Sweden.
    Marnay, C.
    Lawrence Berkeley National Laboratory, CA, United States.
    Djilali, N.
    University of Victoria, Victoria, Canada.
    Dahlquist, Erik
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Wu, J.
    Cardiff University, Cardiff, United Kingdom.
    Jia, H.
    Tianjin University, Tianjin, China.
    Distributed Energy and Microgrids (DEM)2018Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 210, s. 685-689Artikel i tidskrift (Refereegranskat)
  • 246. Wang, C.
    et al.
    Zeng, L.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Lundgren, J.
    Potential Carbon Dioxide Emission Reduction in China by Using Swedish Bioenergy Technologies2006Ingår i: GHGT-8 Conference, 2006Konferensbidrag (Refereegranskat)
  • 247.
    Wang, Chuan
    et al.
    Luleå University of Technology, Luleå, Sweden.
    Zeng, Lei
    Luleå University of Technology, Luleå, Sweden.
    Yan, Jinyue
    Mälardalens högskola, Institutionen för samhällsteknik.
    Lundgren, Joakim
    Luleå University of Technology, Luleå, Sweden.
    Potential Carbon Dioxide Emission Reduction in China by Using Swedish Bioenergy Technologies2006Ingår i: GHGT-8 Conference, 19-22 June 2006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    During recent years, an increased attention has been given by industries and governments from industrialized as well as developing countries to reduce greenhouse gas (GHG) emissions through the clean development mechanism (CDM). As China has increasing demands on bioenergy and Sweden has good practices and competence in developing and utilizing bioenergy technologies, this paper studies the resulting consequence if implementing Swedish bioenergy technologies in China. The potential CO2 emission reduction from each technology in China is studied. A few priority areas for future CDM projects selection by using Swedish technologies are recommended.

  • 248.
    Wang, F.
    et al.
    Tianjin University, Ministry of Education of China, Tianjin, China.
    Deng, S.
    Tianjin University, Ministry of Education of China, Tianjin, China.
    Zhao, J.
    Tianjin University, Ministry of Education of China, Tianjin, China.
    Wang, J.
    Tianjin University, Ministry of Education of China, Tianjin, China.
    Sun, T.
    Tianjin University, Ministry of Education of China, Tianjin, China.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Tianjin University, Ministry of Education of China, Tianjin, China; Royal Institute of Technology, Stockholm, Sweden.
    Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture2017Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 119, s. 278-287Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A novel carbon capture and storage system integrated with geothermal energy was proposed to reduce energy consumption in the post-combustion CO2 capture (PCC) process. Geothermal energy at medium temperature was used to provide the heat required for solvent regeneration. A technical and economic assessment was conducted based on a 300 MWe coal-fired power plant. Additionally, the integrated system was also compared with a stand-alone geothermal power (GP) plant to evaluate individual advantages. Both an enhanced geothermal system (EGS) and a hot sedimentary aquifer (HSA) reservoir were selected to identify the effect of geological properties and heat characteristics on system performance. The results indicated that the geothermal-assisted post-combustion CO2 capture (GPCC) plant exhibited better performance than the PCC plant. The net plant average efficiency increased 5.56% and 4.42% in the EGS scenario and HSA scenario, respectively. Furthermore, the net incremental geothermal efficiency obtained corresponded to 21.34% and 20.35% in the EGS scenario and HSA scenario, respectively. The economic assessment indicated that the GPCC systems in both the EGS scenario and HSA scenario had lower marginal cost of electricity (70.84 $/MWh and 101.06 $/MWh) when compared with that of the stand-alone GP systems (151.09 $/MWh and 101.95 $/MWh). 

  • 249.
    Wang, F.
    et al.
    Tianjin University, Ministry of Education of China, Tianjin, China.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Zhao, J.
    Tianjin University, Ministry of Education of China, Tianjin, China.
    Deng, S.
    Tianjin University, Ministry of Education of China, Tianjin, China.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Institute of Technology, Stockholm, Sweden.
    Technical and economic analysis of integrating low-medium temperature solar energy into power plant2016Ingår i: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 112, s. 459-469Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In order to mitigate CO2 emission and improve the efficiency of the utilization of solar thermal energy (STE), solar thermal energy is proposed to be integrated into a power plant. In this paper, seven configurations were studied regarding the integration of STE. A 300 MWe subcritical coal-fired plant was selected as the reference, chemical absorption using monoethanolamine solvent was employed for CO2 capture, and parabolic trough collectors and evacuated tube collectors were used for STE collection. Both technical analysis and economic evaluation were conducted. Results show that integrating solar energy with post-combustion CO2 capture can effectively increase power generation and reduce the electrical efficiency penalty caused by CO2 capture. Among the different configurations, Config-2 and Config-6, which use medium temperature STE to replace high pressure feedwater without and with CO2 capture, show the highest net incremental solar efficiency. When building new plants, integrating solar energy can effectively reduce the levelized cost of electricity (LCOE). The lowest LCOE, 99.28 USD/MWh, results from Config-6, with a parabolic trough collector price of 185 USD/m2. When retrofitting existing power plants, Config-6 also shows the highest net present value (NPV), while Config-2 has the shortest payback time at a carbon tax of 50 USD/ton CO2. In addition, both LCOE and NPV/payback time are clearly affected by the relative solar load fraction, the price of solar thermal collectors and the carbon tax. Comparatively, the carbon tax can affect the configurations with CO2 capture more clearly than those without CO2 capture. 

  • 250.
    Wang, F.
    et al.
    Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin, China.
    Zhao, J.
    Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin, China.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Ningbo RX New Materials Tech. Co., Ltd., Ningbo, China.
    Deng, S.
    Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin, China.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin, China.
    Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors2017Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 185, s. 1471-1480Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The amine-based chemical absorption for CO2 capture normally needs to extract steam from the steam turbine cycle for solvent regeneration. Integrating solar thermal energy enables the reduction of steam extraction and therefore, can reduce the energy penalty caused by CO2 capture. In this paper, a pilot system of the solar thermal energy assisted chemical absorption was built to investigate the system performance. Two types of solar thermal energy collectors, parabolic trough and linear Fresnel reflector, were tested. It was found that the values of operation parameters can meet the requirements of designed setting parameters, and the solar collectors can provide the thermal energy required by the reboiler, while its contribution was mainly determined by solar irradiation. The solvent regeneration was investigated by varying the heat input. The results show that the response time of the reboiler heat duty is longer than those of the reboiler temperature and desorber pressure. This work provides a better understanding about the overall operation and control of the system.

2345678 201 - 250 av 371
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf