mdh.sePublications
Change search
Refine search result
123 101 - 111 of 111
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Non-contact heart rate monitoring using lab color space2016In: Studies in Health Technology and Informatics, 2016, Vol. 224, p. 46-53Conference paper (Refereed)
    Abstract [en]

    Research progressing during the last decade focuses more on non-contact based systems to monitor Heart Rate (HR) which are simple, low-cost and comfortable to use. Most of the non-contact based systems are using RGB videos which is suitable for lab environment. However, it needs to progress considerably before they can be applied in real life applications. As luminance (light) has significance contribution on RGB videos HR monitoring using RGB videos are not efficient enough in real life applications in outdoor environment. This paper presents a HR monitoring method using Lab color facial video captured by a webcam of a laptop computer. Lab color space is device independent and HR can be extracted through facial skin color variation caused by blood circulation considering variable environmental light. Here, three different signal processing methods i.e., Fast Fourier Transform (FFT), Independent Component Analysis (ICA) and Principal Component Analysis (PCA) have been applied on the color channels in video recordings and blood volume pulse (BVP) has been extracted from the facial regions. In this study, HR is subsequently quantified and compare with a reference measurement. The result shows that high degrees of accuracy have been achieved compared to the reference measurements. Thus, this technology has significant potential for advancing personal health care, telemedicine and many real life applications such as driver monitoring.

  • 102.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Non-Contact Physiological Parameters Extraction Using Camera2016In: Internet of Things. IoT Infrastructures: Second International Summit, IoT 360° 2015 Rome, Italy, October 27–29, 2015. Revised Selected Papers, Part I, 2016, Vol. 169, p. 448-453Conference paper (Refereed)
    Abstract [en]

    Physiological parameters such as Heart Rate (HR), Beat-to-Beat Interval (IBI) and Respiration Rate (RR) are vital indicators of people’s physiological state and important to monitor. However, most of the measurements methods are connection based, i.e. sensors are connected to the body which is often complicated and requires personal assistance. This paper proposed a simple, low-cost and non-contact approach for measuring multiple physiological parameters using a web camera in real time. Here, the heart rate and respiration rate are obtained through facial skin colour variation caused by body blood circulation. Three different signal processing methods such as Fast Fourier Transform (FFT), independent component analysis (ICA) and Principal component analysis (PCA) have been applied on the colour channels in video recordings and the blood volume pulse (BVP) is extracted from the facial regions. HR, IBI and RR are subsequently quantified and compared to corresponding reference measurements. High degrees of agreement are achieved between the measurements across all physiological parameters. This technology has significant potential for advancing personal health care and telemedicine. 

  • 103.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Non-Contact Physiological Parameters Extraction Using Facial Video Considering Illumination, Motion, Movement and Vibration2020In: IEEE Transactions on Biomedical Engineering, ISSN 0018-9294, E-ISSN 1558-2531, Vol. 67, no 1, p. 88-98, article id 8715455Article in journal (Refereed)
    Abstract [en]

    Objective: In this paper, four physiological parameters, i.e., heart rate (HR), inter-beat-interval (IBI), heart rate variability (HRV), and oxygen saturation (SpO2), are extracted from facial video recordings. Methods: Facial videos were recorded for 10 min each in 30 test subjects while driving a simulator. Four regions of interest (ROIs) are automatically selected in each facial image frame based on 66 facial landmarks. Red-green-blue color signals are extracted from the ROIs and four physiological parameters are extracted from the color signals. For the evaluation, physiological parameters are also recorded simultaneously using a traditional sensor 'cStress,' which is attached to hands and fingers of test subjects. Results: The Bland Altman plots show 95% agreement between the camera system and 'cStress' with the highest correlation coefficient R = 0.96 for both HR and SpO2. The quality index is estimated for IBI considering 100 ms R-peak error; the accumulated percentage achieved is 97.5%. HRV features in both time and frequency domains are compared and the highest correlation coefficient achieved is 0.93. One-way analysis of variance test shows that there are no statistically significant differences between the measurements by camera and reference sensors. Conclusion: These results present high degrees of accuracy of HR, IBI, HRV, and SpO2 extraction from facial image sequences. Significance: The proposed non-contact approach could broaden the dimensionality of physiological parameters extraction using cameras. This proposed method could be applied for driver monitoring application under realistic conditions, i.e., illumination, motion, movement, and vibration.

  • 104.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Vision-Based Remote Heart Rate Variability Monitoring using Camera2018In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 225, 2018, p. 10-18Conference paper (Refereed)
    Abstract [en]

    Heart Rate Variability (HRV) is one of the important physiological parameter which is used to early detect many fatal disease. In this paper a non-contact remote Heart Rate Variability (HRV) monitoring system is developed using the facial video based on color variation of facial skin caused by cardiac pulse. The lab color space of the facial video is used to extract color values of skin and signal processing algorithms i.e., Fast Fourier Transform (FFT), Independent Component Analysis (ICA), Principle Component Analysis (PCA) are applied to monitor HRV. First, R peak is detected from the color variation of skin and then Inter-Beat-Interval (IBI) is calculated for every consecutive R-R peak. HRV features are then calculated based on IBI both in time and frequency domain. MySQL and PHP programming language is used to store, monitor and display HRV parameters remotely. In this study, HRV is quantified and compared with a reference measurement where a high degree of similarities is achieved. This technology has significant potential for advancing personal health care especially for telemedicine.

  • 105.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Funk, Peter
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Real Time Heart Rate Monitoring from Facial RGB Color Video using Webcam2016In: The 29th Annual Workshop of the Swedish Artificial Intelligence Society SAIS 2016, Malmö, Sweden, 2016Conference paper (Refereed)
    Abstract [en]

    Heart Rate (HR) is one of the most important Physiological parameter and a vital indicator of people’s physiological state and is therefore important to monitor. Monitoring of HR often involves high costs and complex application of sensors and sensor systems. Research progressing during last decade focuses more on noncontact based systems which are simple, low-cost and comfortable to use. Still most of the noncontact based systems are fit for lab environments in offline situation but needs to progress considerably before they can be applied in real time applications. This paper presents a real time HR monitoring method using a webcam of a laptop computer. The heart rate is obtained through facial skin color variation caused by blood circulation. Three different signal processing methods such as Fast Fourier Transform (FFT), Independent Component Analysis (ICA) and Principal Component Analysis (PCA) have been applied on the color channels in video recordings and the blood volume pulse (BVP) is extracted from the facial regions. HR is subsequently quantified and compared to corresponding reference measurements. The obtained results show that there is a high degrees of agreement between the proposed experiments and reference measurements. This technology has significant potential for advancing personal health care and telemedicine. Further improvements of the proposed algorithm considering environmental illumination and movement can be very useful in many real time applications such as driver monitoring.

  • 106.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Barua, Shaibal
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Hök, Bertil
    Hök Instrument AB.
    A Case-Based Classification for Drivers’ Alcohol Detection Using Physiological Signals2016Conference paper (Refereed)
    Abstract [en]

    This paper presents a case-based classification system for alcohol detection using physiological parameters. Here, four physiological parameters e.g. Heart Rate Variability (HRV), Respiration Rate (RR), Finger Temperature (FT), and Skin Conductance (SC) are used in a Case-based reasoning (CBR) system to detect alcoholic state. In this study, the participants are classified into two groups as drunk or sober. The experimental work shows that using the CBR classification approach the obtained accuracy for individual physiological parameters e.g., HRV is 85%, RR is 81%, FT is 95% and SC is 86%. On the other hand, the achieved accuracy is 88% while combining the four parameters i.e., HRV, RR, FT and SC using the CBR system. So, the evaluation illustrates that the CBR system based on physiological sensor signal can classify alcohol state accurately when a person is under influence of at least 0.2 g/l of alcohol.

  • 107.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Driver monitoring in the context of autonomous vehicle2015In: Frontiers in Artificial Intelligence and Applications, Amsterdam, 2015, Vol. 278, p. 108-117Conference paper (Refereed)
    Abstract [en]

    Today research is going on within different essential functions need to bring automatic vehicles to the roads. However, there will be manual driven vehicles for many years before it is fully automated vehicles on roads. In complex situations, automated vehicles will need human assistance for long time. So, for road safety driver monitoring is even more important in the context of autonomous vehicle to keep the driver alert and awake. But, limited effort has been done in total integration between automatic vehicle and human driver. Therefore, human drivers need to be monitored and able to take over control within short notice. This papers provides an overview on autonomous vehicles and un-obstructive driver monitoring approaches that can be implemented in future autonomous vehicles to monitor driver e.g., to diagnose and predict stress, fatigue etc. in semi-automated vehicles. 

  • 108.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ins and Outs of Big Data: A Review2016Conference paper (Refereed)
    Abstract [en]

    Today with the fast development of digital technologies and advance communications a gigantic amount of data sets with massive and complex structures called ‘Big data’ is being produced everyday enormously and exponentially. Again, the arrival of social media, advent of smart homes, offices and hospitals are connected as Internet of Things (IoT), this influence also a lot to Big data. According to the study, Big data presents data sets with large magnitude including structured, semi-structured or unstructured data. The study also presents the new technologies for data analyzing, collecting, fast searching, proper sharing, exact storing, speedy transferring, hidden pattern visualization and violations of privacy etc. This paper presents an overview of ins and outs of Big Data where the content, scope, samples, methods, advantages, challenges and privacy of Big data have been discussed. The goal of this article is to provide big data knowledge to the research community for the sake of its many real life applications such as traffic management, driver monitoring, health care in hospitals, meteorology and so on.

  • 109.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Iyer, Shankar
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Meusburger, Caroline
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Dobrovoljski, Kolja
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Stoycheva, Mihaela
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Turkulov, Vukan
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    SmartMirror: An Embedded Non-contact System for Health Monitoring at Home2016Conference paper (Refereed)
    Abstract [en]

    The ‘Smart Mirror’ project introduces non-contact based technological innovations at our homes where its usage can be as ubiquitous as ‘looking at a mirror’ while providing critical actionable insights thereby leading to improved care and outcomes. The key objectives is to detect key physiological markers like Heart Rate (HR), Respiration Rate (RR), Inter-beat-interval (IBI) and Blood Pressure (BP) and also drowsiness using the video input of the individual standing in front of the mirror and display the results in real-time. A satisfactory level of accuracy has been attained with respect to the reference sensors signal.

  • 110.
    Rahman, Hamidur
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Sandberg, Johan
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Eriksson, Lennart
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Heidari, Mohammad
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Arwald, Jan
    Exformation AB, Lidingö, Sweden.
    Eriksson, Peter
    Exformation AB, Lidingö, Sweden.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Lindén, Maria
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Falling Angel - a Wrist Worn Fall Detection System Using K-NN Algorithm2016Conference paper (Refereed)
    Abstract [en]

    A wrist worn fall detection system has been developed where the accelerometer data from an angel sensor is analyzed by a two-layered algorithm in an android phone. Here, the first layer uses a threshold to find potential falls and if the thresholds are met, then in the second layer a machine learning i.e., k-Nearest Neighbor (k-NN) algorithm analyses the data to differentiate it from Activities of Daily Living (ADL) in order to filter out false positives. The final result of this project using the k-NN algorithm provides a classification sensitivity of 96.4%. Here, the acquired sensitivity is 88.1% for the fall detection and the specificity for ADL is 98.1%.

  • 111.
    Tsiftes, Nicolas
    et al.
    SICS Swedish ICT, Kista, Sweden.
    Duquennoy, Simon
    SICS Swedish ICT, Kista, Sweden.
    Voigt, Thiemo
    SICS Swedish ICT, Kista, Sweden.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Köckemann, Uwe
    Örebro University, Örebro, Sweden.
    Loutfi, Amy
    Örebro University, Örebro, Sweden.
    The E-Care@Home Infrastructure for IoT-Enabled Healthcare2016In: Internet of Things Technologies for HealthCare. HealthyIoT 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 187., Springer, 2016, p. 138-140Conference paper (Refereed)
    Abstract [en]

    The E-Care@Home Project aims at providing a comprehensive IoT-based healthcare system, including state-of-the-art communication protocols and high-level analysis of data from various types of sensors. With this poster, we present its novel technical infrastructure, consisting of low-power IPv6 networking, sensors for health monitoring, and resource-efficient software, that is used to gather data from elderly patients and their surrounding environment.

123 101 - 111 of 111
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf