More than 34 old glasswork sites in the southeastern part of Sweden pose a permanent threat to human and environmental health due to the presence of toxic metals in open dumps with glass waste. The possibility of leaching of metals from different fractions of the disposed waste needed to be assessed. In the present investigation, leachate from fine fraction (soil plus glass particles < 2 mm) was characterized as following: pH (7.3), TOC (< 2%), organic content (4.4%), moisture content (9.7), COD (163 mg/kg) and trace elements content, being the values in accordance to the Swedish guidelines for landfilling of inert materials. However, very high metals content was found in the fine fraction as well as in all colors of the glass fraction (≥ 2 mm), whose values were compatible to hazardous waste landfill class. Tests with Lepidium sativum growing in the fine fraction as substrate revealed chronic toxicity expressed as inhibition of root biomass growth in 11 out of 15 samples. Additionally, leachate from fine fractions posed acute toxicity to genetically modified E. coli (Toxi-Chromotest). This study highlights the importance of combining physicochemical characterization with toxicity tests for both solid waste and leachate obtained from different waste fractions for proper hazardousness assessment supporting decision making on remediation demands.
More than 34 old glasswork sites in the southeastern part of Sweden pose a permanent threat to human and environmental health due to the presence of toxic trace elements in open dumps with glass waste. The possibility of leaching of trace elements from different fractions of the disposed waste needed to be assessed. In the present investigation, leachate from a mixture of soil and waste glass of particle sizes of less than 2mm (given the name fine fraction) was characterized by analyzing the pH (7.3), total organic content (TOC<2%), organic matter content (4.4%), moisture content (9.7%), chemical oxygen demand (COD, 163mg/kg) and trace elements content, being the values in accordance to the Swedish guidelines for landfilling of inert materials. However, very high trace elements content was found in the fine fraction as well as in all colors of waste glass, whose values were compatible to hazardous waste landfill class. Tests with Lepidium sativum growing in the fine fraction as substrate revealed chronic toxicity expressed as inhibition of root biomass growth in 11 out of 15 samples. Additionally, leachate from fine fractions posed acute toxicity to genetically modified E. coli (Toxi-Chromotest). This study highlights the importance of combining physicochemical characterization with toxicity tests for both solid waste and leachate obtained from different waste fractions for proper hazardousness assessment supporting decision making on remediation demands.
Physico-chemical characteristics of waste, particularly fine fraction (FF), from an old crystal glass waste dump in Sweden were studied to assess recycling or disposal alternatives. Hand-sorting of the waste indicated glass content of 44.1% while sieving established the FF as a more soil-like mix of glass and other materials constituting 33.3% of all excavated waste. The FF was around neutral pH with 24.4% moisture content, low values of Total Dissolved Solids, Dissolved Organic Carbon and fluorides, but hazardous concentrations of As, Cd, Pb and Zn according to the Swedish Environmental Protection Agency guidelines. While the FF leached metals in low concentrations at neutral pH, it leached considerably during digestion with nitric acid, implying leaching risks at low pH. Thus, the waste requires safe storage in hazardous waste class ‘bank account’ storage cells to avoid environmental contamination as metal recovery and other recycling strategies for the glass waste are being developed. The study could fill the information gap regarding preservation of potential resources in the on-going, fast-paced excavation and re-landfilling of heavy metal contaminated materials in the region.
This study investigates the potential for Electrical Resistivity Tomography (ERT) to detect buried glass ‘hotspots’ in a glass waste dump based on results from an open glass dump investigated initially. This detection potential is vital for excavation and later use of buried materials as secondary resources. After ERT, test pits (TPs) were excavated around suspected glass hotspots and physico-chemical characterisation of the materials was done. Hotspots were successfully identified as regions of high resistivity (>8000 Ωm) and were thus confirmed by TPs which indicated mean glass composition of 87.2% among samples (up to 99% in some). However, high discrepancies in material resistivities increased the risk for introduction of artefacts, thus increasing the degree of uncertainty with depth, whereas similarities in resistivity between granite bedrock and crystal glass presented data misinterpretation risks. Nevertheless, suitable survey design, careful field procedures and caution exercised by basing data interpretations primarily on TP excavation observations generated good results particularly for near-surface materials, which is useful since glass waste dumps are inherently shallow. Thus, ERT could be a useful technique for obtaining more homogeneous excavated glass and other materials for use as secondary resources in metal extraction and other waste recycling techniques while eliminating complicated and often costly waste sorting needs.
Oak wood leachate obtained from two storage facilities (storage pound and ditch) in a wood-based industry, and leachate generated by a laboratory leaching test, were characterized in seven categories regarding particle size distribution (PSD) (raw leachate, <= 20 mu m, <= 10 mu m, <= 1.2 mu m, <= 13 nm, <= 5 nm and <= 2 nm). The PSD followed a normal distribution model with a correlation coefficient (r) varying from 82 to 88. Each fraction was analysed regarding chemical oxygen demand, polyphenols and acute toxicity in toxicity assays with Artemia salina, Vibrio fischeri and Lactuca sativa. Fractions with particles > 1.2 mu m were more toxic to A. salina and V. fisheri than fractions with particles <= 1.2 mu m. No toxic effect was observed for L. sativa. The results suggest that polyphenols are the main toxic compounds in oak wood leachate. A conspicuous difference was found between field and laboratory samples.