Med utvecklingen mot Industri 5.0 utvecklas tillverkningsföretag mot smart produktion. I smart produktion används data som en resurs för att koppla samman olika element i produktionssystemet i syfte att lära sig om och anpassa sig efter förändrade produktionsförhållanden. Vanliga mål för smart produktion inkluderar resurseffektivitet, och en hållbar produktion anpassad utifrån människan. För att åstadkomma dessa önskade fördelar, behöver tillverkningsföretag använda digitala teknologier för att skapa och hantera hela dataflödet. För att möjliggöra smart produktion är det viktigt att implementera digitala teknologier på ett sätt så att insamlad rådata omvandlas till användbar data som kan tillämpas av maskiner eller människor för att skapa värde eller minska slöseri i produktionen. Detta kräver hänsyn till dataflödet inom produktionssystemet, det vill säga hela processen att omvandla rådata till användbar data som inkluderar datahanteringsaspekter som exempelvis insamling, analys och visualisering av data. För att möjliggöra ett bra dataflöde krävs det att flera digitala teknologier kombineras. Många tillverkningsföretag står dock inför flera utmaningar när de ska välja lämpliga digitala teknologier för sitt specifika produktionssystem. Vanliga utmaningar är relaterade till det överväldigande antalet avancerade digitala teknologier som finns på marknaden, samt komplexiteten hos produktionssystem och digitala teknologier. Detta gör det till en komplex uppgift att förstå vilka digitala tekniker som ska väljas och vilka resurser och åtgärder som behövs för att integrera dem i produktionssystemet.
Mot denna bakgrund är syftet med denna licentiatuppsats att undersöka hur tillverkningsföretag ska välja och integrera digitala teknologier för att uppnå smart produktion. Mer specifikt så undersöker denna licentiatuppsats vilka utmaningar och kritiska faktorer som finns för att välja och integrera digitala teknologier för att uppnå smart produktion. Detta uppnåddes genom en kvalitativ multipel fallstudie med tillverkningsföretag inom olika branscher och av olika storlekar. Resultaten visar att identifierade utmaningar och kritiska faktorer är relaterade till de olika faserna av datavärdekedjan: datakällor och insamling, datakommunikation, databearbetning och lagring samt datavisualisering och användning. Generella utmaningar och kritiska faktorer som var relaterade till alla faser av datavärdekedjan identifierades också. Dessutom var utmaningarna och kritiska faktorerna relaterade till människa, process och tekniska aspekter. Detta visar att det finns ett behov av helhetsperspektiv på hela datavärdekedjan och olika element i produktionssystemet när digitala teknologier väljs och integreras. Dessutom finns det ett behov av att definiera en strukturerad process för val och integration av digital teknik, där både ledning och operativ nivå är involverade.