mdh.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gustafsson, M.
    et al.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Swing Gustafsson, Moa
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Myhren, J. A.
    Dalarna University, Falun, Sweden.
    Bales, C.
    Dalarna University, Falun, Sweden.
    Holmberg, S.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Techno-economic analysis of energy renovation measures for a district heated multi-family house2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 177, p. 108-116Article in journal (Refereed)
    Abstract [en]

    Renovation of existing buildings is important in the work toward increased energy efficiency and reduced environmental impact. The present paper treats energy renovation measures for a Swedish district heated multi-family house, evaluated through dynamic simulation. Insulation of roof and façade, better insulating windows and flow-reducing water taps, in combination with different HVAC systems for recovery of heat from exhaust air, were assessed in terms of life cycle cost, discounted payback period, primary energy consumption, CO2 emissions and non-renewable energy consumption. The HVAC systems were based on the existing district heating substation and included mechanical ventilation with heat recovery and different configurations of exhaust air heat pump.Compared to a renovation without energy saving measures, the combination of new windows, insulation, flow-reducing taps and an exhaust air a heat pump gave up to 24% lower life cycle cost. Adding insulation on roof and façade, the primary energy consumption was reduced by up to 58%, CO2 emissions up to 65% and non-renewable energy consumption up to 56%. Ventilation with heat recovery also reduced the environmental impact but was not economically profitable in the studied cases. With a margin perspective on electricity consumption, the environmental impact of installing heat pumps or air heat recovery in district heated houses is increased. Low-temperature heating improved the seasonal performance factor of the heat pump by up to 11% and reduced the environmental impact. 

  • 2.
    Swing Gustafsson, Moa
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Mälardalens Högskola.
    Heating of buildings from a system perspective2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Energy efficiency measures in buildings are considered to have great potential for reducing total energy use, and contribute to a reduced climate and environmental impact. In Sweden, however, there is a focus on bought energy, which does not always reflect the environmental and climate impact. Focusing on bought energy means that a house owner may choose an electricity based heat pump instead of district heating (DH), since heat pumps result in less bought energy compared to DH.

    The energy system surrounding the buildings is affected by the choice of energy carriers used for heating. This thesis uses three different methods to study how the energy system is affected. In the first part, primary energy use has been calculated for a simulated building with different heating systems, resulting in different electricity and DH demands. The second part studies the impact on peak demand and annual consumption in the power grid and DH system due to different market shares of electricity based heating and DH. In the third part, the life cycle cost is calculated for different heating solutions from both a building and a socio-economic perspective, for 100 % renewable energy system scenarios.

    The results show that the choice of energy carrier has a great influence on primary energy use. However, this depends even more on the calculation method used. Which heating solution, and thus which energy carrier, gives the lowest primary energy use varies with the different methods.

    The power grid and DH system are affected by the choice of energy carrier. There is a potential to lower peak demand in the power grid by more efficient heat pumps. But an even greater potential is shown by using DH instead of electricity based heating. A larger share of DH also allows the production of more electricity with the use of combined heat and power.

    The life cycle cost for different heating solutions also depends on the method used. From a building owner’s perspective, with current electricity and DH prices, electricity based heating is more economical. However, from a socio-economic perspective, with increasing electricity system costs due to a larger share of variable electricity production in a 100 % renewable system, DH becomes more economically profitable in several scenarios.

    The choice of energy carrier for heating in buildings affects the energy system to a high degree. A system perspective is therefore important in local, national and global energy efficiency policies and projects.

    Download full text (pdf)
    fulltext
  • 3.
    Swing Gustafsson, Moa
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    The impact on the energy system of heating demands in buildings: A case study on district heating and electricity for heating in Falun, Sweden2017Licentiate thesis, comprehensive summary (Other academic)
    Download full text (pdf)
    fulltext
  • 4.
    Swing Gustafsson, Moa
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Dalarna University, Falun, Sweden.
    Myhren, J. A.
    Dalarna University, Falun, Sweden.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Potential for district heating to lower peak electricity demand in a medium-size municipality in Sweden2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 186, p. 1-9Article in journal (Refereed)
    Abstract [en]

    Sweden faces several challenges with more intermittent power in the energy system. One challenge is to have enough power available in periods with low intermittent production. A solution could be to reduce peak demand and at the same time produce more electricity during these hours. One way of doing this is to convert electricity-based heating in buildings to district heating based on combined heat and power. The study analyzes how much a Swedish municipality can contribute to lowering peak electricity demand. This is done by quantifying the potential to reduce the peak demand for six different scenarios of the future heat demand and heat market shares regarding two different energy carriers: electricity-based heating and district heating. The main finding is that there is a huge potential to decrease peak power demand by the choice of energy carrier for the buildings’ heating system. In order to lower electricity peak demand in the future, the choice of heating system is more important than reducing the heat demand itself. For the scenario with a large share of district heating, it is possible to cover the electricity peak demand in the municipality by using combined heat and power. 

  • 5.
    Swing Gustafsson, Moa
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Dalarna University, Sweden.
    Myhren, J. A.
    Dalarna University, Sweden.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Gustafsson, M.
    Linköping University, Sweden.
    Life cycle cost of building energy renovation measures, considering future energy production scenarios2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 14, article id 2719Article in journal (Refereed)
    Abstract [en]

    A common way of calculating the life cycle cost (LCC) of building renovation measures is to approach it from the building side, where the energy system is considered by calculating the savings in the form of less bought energy. In this study a wider perspective is introduced. The LCC for three different energy renovation measures, mechanical ventilation with heat recovery and two different heat pump systems, are compared to a reference case, a building connected to the district heating system. The energy system supplying the building is assumed to be 100% renewable, where eight different future scenarios are considered. The LCC is calculated as the total cost for the renovation measures and the energy systems. All renovation measures result in a lower district heating demand, at the expense of an increased electricity demand. All renovation measures also result in an increased LCC, compared to the reference building. When aiming for a transformation towards a 100% renewable system in the future, this study shows the importance of having a system perspective, and also taking possible future production scenarios into consideration when evaluating building renovation measures that are carried out today, but will last for several years, in which the energy production system, hopefully, will change.

  • 6.
    Swing Gustafsson, Moa
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Högskolan Dalarna, Sweden.
    Myhren, Jonn Are
    Högskolan Dalarna, Sweden.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Mapping of heat and electricity consumption in a medium size municipality in Sweden2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 1434-1439Article in journal (Refereed)
    Abstract [en]

    The Nordic electricity system faces many challenges with an increased share of intermittent power from renewable sources. One such challenge is to have enough capacity installed to cover the peak demands. In Sweden these peaks appear during the winter since a lot of electricity is used for heating. In this paper a mapping of the heat and electricity consumption in a medium size municipality in Sweden is presented. The paper analyze the potential for a larger market share of district heating (DH) and how it can affect the electrical power balance in the case study. The current heat market (HM) and electricity consumption is presented and divided into different user categories. Heating in detached houses not connected to DH covers 25 % of the HM, and 30 % of the electricity consumption during the peak hours. Converting the detached houses not connected to DH in densely populated areas to DH could reduce the annual electricity consumption by 10 %, and the electricity consumption during the peak hours by 20 %.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf