mdh.sePublications
Change search
Refine search result
12345 1 - 50 of 220
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bai, Q.
    et al.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Guo, Z.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yang, Xiaohu
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Jin, L.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology (KTH), Stockholm, Sweden.
    Experimental investigation on the solidification behavior of phase change materials in open-cell metal foams2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 3703-3708Article in journal (Refereed)
    Abstract [en]

    This study presented an experimental investigation on solidification behavior of fluid saturated in highly porous open-cell copper foams. Particular attention has been made on the effect of pore parameters (pore density and porosity) on the solidification behavior. A purposely-designed apparatus was built for experimental observations. Results showed that the copper foam had a great effect on solidification and the full solidification time can be saved up to 50%, especially preventing the decrease in solidification rate during the later stage of phase change. The smaller the porosity is, the faster the solidification rate will be. Pore density was found to have little influence upon the solidification rate. In addition, the local natural convection does exist but it has a slight effect on solidification, leading to the slant of the solid-liquid interface. 

  • 2.
    Bian, Caiyun
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Lin, L.
    Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, Beijing, 102249, China.
    Yu, Z.
    Department of Energy and Petroleum EngineeringUniversity of Stavanger, Norway.
    Finding the optimal location for public charging stations - A GIS-based MILP approach2019In: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, p. 6582-6588Conference paper (Refereed)
    Abstract [en]

    Electric Vehicles (EVs) have achieved a significant development because of the continuous technology revolution and policy supports in recent years, which leads to a larger demand of charging stations. Strategies about how to find the optimal location for charging facilities are urgently needed in order to further assist the development of EVs. This paper focus on the return of investments on EV charging stations and proposes a Mixed Integer Linear Programming (MILP) model based on Geographic Information System (GIS) to identify the optimal location of charging stations in cities. Traffic flow data and land-use classifications are used as important inputs, and six important constraints are included in the MILP model with the objective function of maximizing the total profits of new charging stations. The effectiveness of the proposed method is then demonstrated by implementing a case study in Västerås, Sweden.

  • 3.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Leduc, S.
    IIASA, Laxenburg, Austria.
    Kim, M
    Korea Univ., Seul, Korea.
    Liu, J.
    Beijing Forestry Univ, Peoples R China.
    Kraxner, F.
    IIASA, Laxenburg, Austria.
    McCallum, I.
    IIASA, Laxenburg, Austria.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Stockholm.
    Optimal grassland locations for sustainable photovoltaic water pumping systems in China2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 301-307Article in journal (Refereed)
    Abstract [en]

    Grassland is of strategic importance for food security of China because of the high number of livestock raised in those areas. Grassland degradation due to climate change and overgrazing is thus regarded as severe environmental and economic threat for a sustainable future development of China. Photovoltaic water pumping (PVWP) systems for irrigation can play an important role for the conservation of grassland areas, halting degradation, improving its productivity and farmers' income and living conditions. The aim of this paper is to identify the technically suitable grassland areas for the implementation of PVWP systems by assessing spatial data on land cover and slope, precipitation, potential evapotranspiration and water stress index. Furthermore, the optimal locations for installing PVWP systems have been assessed using a spatially explicit renewable energy systems optimization model based on the minimization of the cost of the whole supply chain. The results indicate that the PVWP-supported grassland areas show high potential in terms of improving forage productivity to contribute to supplying the local demand. Nevertheless, the optimal areas are highly sensitive to several environmental and economic parameters such as ground water depth, forage water requirements, forage price and CO2 emission costs. These parameters need to be carefully considered in the planning process to meet the forage yield potentials.

  • 4.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Leduc, S.
    Int Inst Appl Syst Anal, Laxenburg, Austria..
    Kim, M.
    Korea Univ, South Korea..
    Olsson, A.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Zhang, J.
    Univ Maryland, USA..
    Liu, J.
    Int Inst Appl Syst Anal, Laxenburg, Austria.; South Univ Sci & Technol China, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China.;Beijing Forestry Univ, Sch Nat Conservat, Peoples R China..
    Kraxner, F.
    Int Inst Appl Syst Anal, Laxenburg, Austria..
    McCallum, I.
    Int Inst Appl Syst Anal, Laxenburg, Austria..
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Suitable and optimal locations for implementing photovoltaic water pumping systems for grassland irrigation in China2017In: APPLIED ENERGY, ISSN 0306-2619, Vol. 185, p. 1879-1889Article in journal (Refereed)
    Abstract [en]

    Grassland plays a key role for the food security of China because of the large number of livestock raised in those areas. Thus, grassland degradation due to climate change and overgrazing is considered as one of the most severe environmental and economic threat for the future sustainable development of China. Photovoltaic water pumping systems for irrigation can play a fundamental role for the conservation of grassland areas. This paper investigates the geospatial distribution of the technically suitable grassland locations for the implementation of photovoltaic water pumping systems. The technically suitable grassland areas were taken as starting point to assess the optimal locations. The assessment of the optimal locations was conducted using a spatially explicit optimization model of renewable energy systems based on the cost minimization of the whole forage supply chain. The results indicate that the photovoltaic water pumping systems provide high potential for improving forage productivity, contributing to meet the local demand. The optimal areas are highly sensitive to several environmental and economic parameters such as increased forage potential yield, forage management costs, forage water requirements, ground water depth, forage price and CO2 price. Most of the optimal areas are selected when the market forage price ranges from 300 to 500 $/tonne DM, indicating that the forage produced using PVWP technology for irrigation is already competitive compared to the imported forage.

  • 5.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Hao, Yong
    Jin, H.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Optimal C-PV/T system integrated in biomethane production2018Conference paper (Refereed)
  • 6.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering.
    Li, Hailong
    Mälardalen University, School of Innovation, Design and Engineering.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering.
    Dynamic modelling of a pv pumping system with special consideration on water demandIn: Proceedings of ICAE2012 / [ed] Applied EnergyConference paper (Other academic)
  • 7.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dynamic modelling of a PV pumping system with special consideration on water demand2013In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 112, p. 635-645Article in journal (Refereed)
    Abstract [en]

    The exploitation of solar energy in remote areas through photovoltaic (PV) systems is an attractive solution for water pumping for irrigation systems. The design of a photovoltaic water pumping system (PVWPS) strictly depends on the estimation of the crop water requirements and land use since the water demand varies during the watering season and the solar irradiation changes time by time. It is of significance to conduct dynamic simulations in order to achieve the successful and optimal design. The aim of this paper is to develop a dynamic modelling tool for the design of a of photovoltaic water pumping system by combining the models of the water demand, the solar PV power and the pumping system, which can be used to validate the design procedure in terms of matching between water demand and water supply. Both alternate current (AC) and direct current (DC) pumps and both fixed and two-axis tracking PV array were analyzed. The tool has been applied in a case study. Results show that it has the ability to do rapid design and optimization of PV water pumping system by reducing the power peak and selecting the proper devices from both technical and economic viewpoints. Among the different alternatives considered in this study, the AC fixed system represented the best cost effective solution.

  • 8.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Stockholm, Sweden.
    Techno-economic feasibility of the irrigation system for the grassland and farmland conservation in China: photovoltaic vs. wind power water pumping2015In: Energy Conversion and Management, ISSN 0196-8904, Vol. 103, no 6, p. 311-320Article in journal (Refereed)
    Abstract [en]

    Photovoltaic water pumping (PVWP) and wind power water pumping (WPWP) systems for irrigation represent innovative solutions for the restoration of degraded grassland and the conservation of farmland in remote areas of China. The present work systematically compares the technical and economic suitability of such systems, providing a general approach for the design and selection of the suitable technology for irrigation purposes. The model calculates the PVWP and WPWP systems sizes based on irrigation water requirement (IWR), solar irradiation and wind speed. Based on the lowest PVWP and WPWP systems components costs, WPWP systems can compete with PVWP systems only at high wind speed and low solar irradiation values. Nevertheless, taking into account the average specific costs both for PVWP and WPWP systems, it can be concluded that the most cost-effective solution for irrigation is site specific. According to the dynamic simulations, it has also been found that the PVWP systems present better performances in terms of matching between IWR and water supply compared to the WPWP systems. The mismatch between IWR and pumped water resulted in a reduction of crop yield. Therefore, the dynamic simulations of the crop yield are essential for economic assessment and technology selection.

  • 9.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zaccaria, Valentina
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, Yang
    Stridh, Bengt
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Flexibility Services Provided by Building Thermal Inertia2018Conference paper (Refereed)
  • 10.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, J.
    Institute of Water Resources and Hydropower Research, Beijing, China .
    Liu, J.
    Institute of Water Resources and Hydropower Research, Beijing, China .
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Economic optimization of photovoltaic water pumping systems for irrigation2015In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 95, p. 32-41Article in journal (Refereed)
    Abstract [en]

    Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor.

  • 11.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Olsson, A.
    KTH Royal Institute of Technology, Stockholm.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    An economic analysis of photovoltaic water pumping irrigation systems2016In: International Journal of Green Energy, ISSN 1543-5075, E-ISSN 1543-5083, Vol. 13, no 8, p. 831-839Article in journal (Refereed)
    Abstract [en]

    ABSTRACT: Irrigation using the photovoltaic water pumping (PVWP) systems represents a sustainable and attractive solution, which can combat Chinese grassland desertification and promote a sustainable development of the agricultural sector. This paper investigates the economics of PVWP systems taking into consideration the effects of the key components on the initial capital cost (ICC), life cycle cost (LCC), and revenues. Sensitivity analyses are conducted regarding the crop yield and price, cost of photovoltaic modules, and system components included in the ICC. Results show that the cost of the PVWP system is the most sensitive parameter affecting the ICC under the assumptions made, especially the cost of the PV modules; whereas, the crop production and price affect the net present value (NPV) and payback period (PBP) clearly. The PVWP has surplus power output when the crop water demand is low or it is non-irrigation season. The potential benefit from selling the surplus electricity is also discussed. In addition, the indirect benefits of carbon sequestration and CO2 emission reduction by applying PVWP systems are addressed in this paper.

  • 12.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Olsson, Alexander
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Economic analysis of photovoltaic water pumping irrigation systems2013Conference paper (Refereed)
    Abstract [en]

    Irrigation through photovoltaic water pumping (PVWP) system represents one of sustainable and attractivesolutions regarding the problems related to the Chinese grassland desertification. This paper is to investigatethe economics of PVWP systems taking in consideration of the key parameters affecting the sizing, and furtherthe initial capital cost (ICC), the life cycle cost (LCC) and revenues. In particular photovoltaic (PV) modules cost,availability of the well and of the irrigation system, designing water-head, irrigated area and related waterdemand, fuel price and grass production are investigated for the sensitivity analysis. The possibility ofcombining water pumping with electricity production for maximizing benefits is also discussed. Both PVWP anddiesel water pumping (DWP) systems are compared in terms of ICC and LCC. LCC, sensitivity, break-even point(BEP), net present value (NPV) and payback period (PBP) analyses are used to compare and evaluate theeconomic feasibility of the different alternatives investigated. The results show that the availability of the welland the depth of the ground water resources are the most sensitive parameters affecting the initial capitalcosts whereas the grass production and incentives affect mainly the NPV and PBP. The co-benefits for carbonmitigation and carbon credit trading through implementing photovoltaic water pumping system for the Chinesegrassland are also addressed in this paper.

  • 13.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yang, Z.
    KTH Royal Institute of Technology, Sweden.
    Anders, Lundblad
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Sweden.
    An Open-source Platform for Simulation and Optimization of Clean Energy Technologies2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 946-952Article in journal (Refereed)
    Abstract [en]

    This paper is to describe an open-source code for optimization of clean energy technologies. The model covers the whole chain of energy systems including mainly 6 areas: renewable energies, clean energy conversion technologies, mitigation technologies, intelligent energy uses, energy storage, and sustainability. Originally developed for optimization of renewable water pumping systems for irrigation, the open-source model is written in Matlab® and performs simulation, optimization, and design of hybrid power systems for off-grid and on-grid applications. The model uses genetic algorithm (GA) as optimization technique to find the best mix among power sources, storage systems, and back-up sources to minimize life cycle cost, and renewable power system reliability. 

  • 14.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhu, Y.
    Chengdu University, China.
    Brugiati, Elena
    Università Degli Studi di Perugia, Italy.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    PV water pumping for irrigation equipped with a novel control system for water savings2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 61, p. 949-952Article in journal (Refereed)
    Abstract [en]

    Typically, PV water pumping (PVWP) systems for irrigation are normally designed based on the worst conditions, such as high water demand and low solar irradiation. Therefore, the installed PVWP systems become oversized in most of time. Since the conventional control systems don't optimize the water supply, the water losses are increased. To remedy the problems related to the operation of the oversized systems, a novel control system is proposed. The control unit interacts between water demand and water supply in order to pump only the amount required by crops. Moreover, the novel control system substitutes the conventional protection approach with a method based on the ground water resources availability and response. The novel control system represents an innovative solution for water savings in PV watering applications.

  • 15.
    Chen, B.
    et al.
    Beijing Normal University, China.
    Xiong, R.
    Beijing Institute of Technology, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Sun, Q.
    Shandong University, Jinan, China.
    Yang, J.
    China University of Geosciences, Beijing, China.
    Pathways for sustainable energy transition2019In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 228, p. 1564-1571Article in journal (Refereed)
    Abstract [en]

    Energy transitions are ongoing processes all over the world. While sustainable solutions are envisioned for the future, many societies are still under high-carbon and high-pollution energy regime borne by fossil fuels. How to design pathways towards sustainable energy transition has attracted worldwide concerns. Understanding the possible transition pathways of the energy system requires the integration of new energy technologies, environmental sciences, economics and management. This Special Issue of Journal of Cleaner Production targets to collect the latest research results on sustainable energy systems, discover innovative avenues and inspiring models and share knowledge on energy system modelling and management. In this paper, we identify 4 themes on sustainable energy transition pathways including: (1)Sustainable energy economics and management; (2)Renewable energy generation and consumption; (3)Environmental impacts of energy systems; and (4)Electric vehicle and energy storage. Theories, technologies, innovative models, and successful experiences are discussed accordingly. It is suggested that creative, robust and audacious strategies in governance, management and education are needed to boost sustainable energy transition across various scales and sectors.

  • 16.
    Chen, Chang
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, Tianjin, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, 300134, China.
    Li, X.
    Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, China.
    Wang, Y.
    Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, China.
    Zhu, K.
    Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, China.
    Feasibility of using thermal inertia to shift the peak energy demand of buildings2018In: International Heat Transfer Conference, Begell House Inc. , 2018, p. 4419-4424Conference paper (Refereed)
    Abstract [en]

    Peak load introduces stress to the grid as supplied electricity is inadequate during peak demand period. In order to relieve the stress of grid and ensure the electricity supply, peak load shifting is an effective option. Buildings are consuming a huge amount of energy for space heating, ventilation and cooling. Using building thermal inertia to shift peak load has attracted more and more attention. By using thermal inertia, heat supplied during off-peak periods can be stored in the construction materials, and used in peak demand hours. However, peak shaving shall not sacrifice the indoor thermal comfort. The objective of this work is to investigate the impact of demand shifting by using thermal inertia on the indoor temperature. In order to understand how the demand shifting impacts the thermal comfort. A CFD model is developed to simulate an office room in winter time. Three cases that represent different shifting strategies are studied. According the results, when increasing the heating temperature, using thermal inertia of buildings can shift peak load, guarantee indoor thermal comfort and save energy. © 2018 International Heat Transfer Conference. All rights reserved.

  • 17.
    Chen, S.
    et al.
    Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, Changping, Beijing, China.
    Li, M.
    Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, Changping, Beijing, China.
    Zhang, Q.
    Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, Changping, Beijing, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Study on the Oil Import/Export Quota Allocation Mechanism in China by Using a Dynamic Game-Theoretic Model2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 3856-3861Article in journal (Refereed)
    Abstract [en]

    With the rapid progress of oil market reform in China, independent refineries (small companies) get more and more oil import/export quotas, which will bring big impacts on the whole market and society. However, whether the impacts are positive or negative is highly dependent on the quota allocation mechanism and prices in global/domestic market markets. Therefore, in the present study, considering the game relationships among the six agents including state-owned companies, independent refineries, domestic and foreign oil product consumers, and domestic and foreign crude oil producers, in order to calculate the detailed impacts, a game-theoretic analysis model was developed. The impacts of different quota mechanism are analyzed and compared, and the optimal quota mechanism in different price scenarios is obtained based on the developed model. 

  • 18.
    Chen, S.
    et al.
    China University of Petroleum-Beijing, China.
    Zhang, Q.
    China University of Petroleum-Beijing, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin University of Commerce, China.
    Mclellan, B.
    Kyoto University, Japan.
    Zhang, T.
    China University of Petroleum-Beijing, China.
    Tan, Z.
    Investment decision on shallow geothermal heating & cooling based on compound options model: A case study of China2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 254, article id 113655Article in journal (Refereed)
    Abstract [en]

    Developing shallow geothermal energy is expected to play an important role to supply affordable, clean and reliable heating by many countries in the world. However, the development is mainly hindered by the high upfront investment costs and various risks involved in the exploration, construction and operation phases. The present study proposed a compound options model to explore the optimal investment timing and value based on the consideration of both investment and operational flexibilities. The Least Square Monte Carlo and Markov Chain Monte Carlo methods were employed in the model to find the solutions. A case study was carried out for China, and five scenarios were simulated to understand the effects of different policies including subsidy, carbon trading mechanism, preferential taxation and preferential electricity price. The obtained results show that, (i) the incentive policies are essential for the development of shallow geothermal energy, which can attract more investment before 2030; (ii) the government is suggested to carry out a preferential electricity price for shallow geothermal development, rather than increase the subsidy; (iii) the application of compound options method increases the investment value in all five scenarios, but its impact on investment timing varies.

  • 19.
    Dai, B.
    et al.
    Tianjin University of Commerce, Tianjin, China.
    Liu, S.
    Tianjin University of Commerce, Tianjin, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin University of Commerce, Tianjin, China.
    Sun, Z.
    Tianjin University of Commerce, Tianjin, China.
    Song, M.
    The University of Tokyo, Chiba, Japan.
    Yang, Q.
    Tianjin University of Commerce, Tianjin, China.
    Ma, Yitai
    The University of Tokyo, Chiba, Japan.
    Energetic performance of transcritical CO2 refrigeration cycles with mechanical subcooling using zeotropic mixture as refrigerant2018In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 150, p. 205-221Article in journal (Refereed)
    Abstract [en]

    Transcritical CO2 refrigeration cycle integrated with mechanical subcooling (MS) cycle operating with zeotropic mixture is proposed in this study, based on the concept of Lorenz cycle. An energetic model is developed and analyses are conducted in detail. A maximum overall coefficient of performance (COP) is achieved at the optimum discharge pressure and optimum subcooling degree. The maximum overall COP, optimum subcooling degree and discharge pressure are closely related to the temperature glide of the mixtures. The energy efficiency of the transcritical CO2 refrigeration cycle can be efficiently improved, and the high pressure can be reduced when mixtures with proper temperature glide are used as MS cycle refrigerant. Compared with pure R32, the overall COP is enhanced by 4.91%, and the discharge pressure decreases by 0.11 MPa at evaporation temperature of −5 °C and ambient temperature of 35 °C when R32/R1234ze(Z) (55/45) is employed as MS refrigerant. The mixtures with proper temperature glide are recommended. The thermal performance of the overall cycle can be enhanced more significantly for hot and warm climate regions, or relative low evaporation temperature applications, though a high subcooling degree is required to meet the optimum operation condition.

  • 20.
    Dai, B.
    et al.
    Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
    Qi, H.
    Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
    Liu, S.
    Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
    Ma, M.
    Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
    Zhong, Z.
    Foreign Economic Cooperation Office, Ministry of Ecology and Environment of the People's Republic of China, Beijing, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
    Song, M.
    Department of Human and Engineered Environmental Studies, The University of Tokyo, Chiba, Japan.
    Sun, Z.
    Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
    Evaluation of transcritical CO 2 heat pump system integrated with mechanical subcooling by utilizing energy, exergy and economic methodologies for residential heating2019In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 192, p. 202-220Article in journal (Refereed)
    Abstract [en]

    A transcritical CO 2 heat pump (HP) system for residential space heating integrated with direct dedicated mechanical subcooling (DMS) is proposed, and mathematical models are developed to study the annual energetic and economic performances considering the influence of frosting. The operation characteristics by adopting different heating terminals used in five typical cities are also assessed. The results show a maximum coefficient of performance (COP) is achieved at the optimum discharge pressure and subcooling degree. The COP is promoted by 24.4% and the discharge pressure is decreased by 2.093 MPa at the ambient temperature of −10 °C and water supply/return temperature of 45/40 °C. The seasonal performance factor (SPF) is enhanced more noticeably for severe cold region. For the case of Harbin using floor-coil radiator (FCR) or normal fan-coil unit (N-FCU) as heating terminal, SPF is improved by 32.0%. The highest SPF is achieved when small temperature difference fan-coil unit (STD-FCU) is employed. The exergy efficiency can also be apparently improved, especially for the cities located in severe cold region and using FCR or N-FCU as heating terminal due to the reduction in throttling loss of CO 2 system. The purchased equipment cost and electricity cost of the CO 2 HP with DMS are both lower than those of traditional CO 2 heat pump system. The CO 2 HP DMS system using STD-FCU as heating terminal shows superior economical efficiency to traditional system, with levelized annual total cost reduced by 7.51–15.27%. 

  • 21.
    Dibdiakova, Janka
    et al.
    Norwegian Institute of Bioeconomy Research, Ås, Norway..
    Liang, Wang
    Sintef Energy Research, , Norway.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Heating Value and Ash Content of Downy Birch Forest Biomass2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 1302-1308Article in journal (Refereed)
    Abstract [en]

    Biomass from forestry sector provides an important contribution to meet the government's targets for increasing bioenergy production and utilization. Characterization of forest residues is critical for exploiting and utilizing them for energy production purpose. In present work, stem wood, stem bark, branches, top of trees from downy birch forest were sampled from different sites in South Norway and subjected to heating value and ash content measurement. Properties of different parts of trees vertically along the tree trunk and radially along the branch and crown level were assessed via the statistical model. The heating value of stem wood was in range 18.14-18.57 MJ/kg, of stem bark 18.50-18.72 MJ/kg and of branch wood 18.21-18.50 MJ/kg. The vertical dependence of heating value of downy birch stem wood was similar to that of stem bark. Regular decreasing of heating value towards the tree top was observed. Significantly higher heating value at level p<0.05∗of stem bark than the one of stem wood was observed. The ash content of downy birch branch wood did vary axially along the branch whereas there are only slight differences of ash content of branch within the crown. The stem bark has the highest ash content in range 2.0-2.5%, followed by branch wood in range of 1.0-1.6% and the lowest for stem wood in range of 0.3-0.5%.

  • 22.
    Dibdiakova, Janka
    et al.
    Norwegian Forest & Landscape Inst, Norway.
    Wang, Liang
    Sintef Energy Res, Trondheim, Norway.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Characterization of ashes from Pinus Sylvestris forest biomass2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 186-191Article in journal (Refereed)
    Abstract [en]

    Efficient and profitable biomass combustion is often limited by ash related operational problems. Knowledge of the ash melting and sintering is of important, in terms of predict and reduce ash-related problems in biomass-fired boilers. In this study, chemical composition and melting behaviors of ashes from the four parts of P. sylvestris trees were investigated. The four parts from Pinus sylvestris trees are stem wood, bark, branch base and twigs. A simultaneous thermal analyzer (STA) was used to characterize the melting behavior of selected biomass fuels in oxidizing atmosphere. Ash melting process was identified as the distinctive endothermic peaks on recorded DSC curves. The results showed that the stem wood of pine contains higher contents of most of the ash forming matters than other tree parts. Chemical composition of ashes from four parts of the pine tree is dominated by element Ca, K, Mg, Mn, P and Si. The K, Na and P contents in the twigs are significantly higher than that of stem wood, bark, and branch base indicating high tendency of ash melting and slagging. STA experiments indicated that the melting process of the studied fuel ashes start in the temperature range of 930-965 degrees C. Scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometry (EDX). Analyses results showed that the stem wood ash remains loose structure even after 1000 degrees C sintering treatment. But the ashes originated from top branch show sign of sintering at 1000 degrees C. The obtained results of present work can be considered as useful information within an industry interest for a prediction of the forest biomass ash melting behavior. 

  • 23.
    Ditaranto, M.
    et al.
    SINTEF Energy Research, Trondheim, Norway.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Hu, Y.
    University of South Wales, United Kingdom.
    Evaluation of a pre-combustion capture cycle based on hydrogen fired gas turbine with exhaust gas recirculation (EGR)2014In: Energy Procedia, 2014, p. 1972-1975Conference paper (Refereed)
    Abstract [en]

    Pre-combustion capture technology is a promising route to power generation with CO2 free emissions, by transforming the fossil hydrocarbon fuel into a hydrogen rich fuel with near zero Carbon containing species. This gaseous fuel also allows to use a high efficiency gas turbine into a coal based power plant. The gas turbine combustor however has to meet the challenge of high temperature flame responsible for unacceptable NOx emissions, and a highly reacting fuel impeding the use of conventional dry low NOx combustion technologies. The actual solution to this problem is to dilute the hydrogen fuel with up to 50% Nitrogen. This paper presents a concept where the exhaust gas of the gas turbine is recirculated (EGR) such as to deplete the air of oxygen to produce a low temperature combustion with undiluted hydrogen fuel while flame stability is still ensured by the highly reactive properties of hydrogen. The study compares the concept with a cycle using Selective Catalytic Reduction for NOx control.

  • 24.
    Ditaranto, M.
    et al.
    SINTEF Energy Research, Trondheim, Norway .
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Løvås, T.
    Norwegian University of Science and Technology, Trondheim, Norway .
    Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of combustion and emissions performance2015In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 37, p. 377-383Article in journal (Refereed)
    Abstract [en]

    A novel gas turbine cycle concept applicable to power plants with pre-combustion CO<inf>2</inf> capture or integrated gasification combined cycle (IGCC) is presented. These power plants use a hydrogen rich fuel with high reactive combustion properties which makes fuel dilution necessary to achieve low NOx emissions. The proposed novel gas turbine arrangement is set up as to avoid both fuel dilution and its consequent efficiency penalty, and breakthrough in low NOx combustion technology. In this concept, a high exhaust gas recirculation (EGR) rate is applied in order to generate an oxygen depleted working fluid entering the combustor, enough to reduce the high reactivity of hydrogen rich fuels. As a result, the combustion temperature in this environment is inherently limited, thus, keeping NOx formation rate low. A first order assessment of the combustion characteristics under such gas turbine operating conditions is made in the light of a numerical analysis of stability and NOx emissions potential. Both diffusion and premixed types combustor are considered according to the selected EGR rate. It is first shown that the flame stability could be maintained at EGR rates well above the maximum EGR limit found in conventional natural gas fired gas turbines. The study further shows that at these high EGR rates, considerable reductions in NOx emissions can be expected. The conclusion of this first order analysis is that there is a true potential in reducing the efficiency penalty induced by diluting the fuel in power plants with pre-combustion CO<inf>2</inf> capture. 

  • 25.
    Dong, Beibei
    et al.
    Tianjin Univ Commerce, Key Lab Refrigerat Technol Tianjin, Peoples R China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin Univ Commerce, Key Lab Refrigerat Technol Tianjin, Peoples R China.
    Zhu, Kai
    Tianjin Univ Commerce, Key Lab Refrigerat Technol Tianjin, Peoples R China.
    PVTxy Properties of CO2 Mixtures for CCS: An Update of Experimental Data and Models Since 20092018In: JOINT INTERNATIONAL CONFERENCE ON ENERGY, ECOLOGY AND ENVIRONMENT ICEEE 2018 AND ELECTRIC AND INTELLIGENT VEHICLES ICEIV 2018, DESTECH PUBLICATIONS, INC , 2018Conference paper (Refereed)
    Abstract [en]

    The latest progress on the experimental data and theoretical models regarding PVTxy properties of CO2 mixtures has been updated. This review shows that more experimental data are available, such as the vapor liquid equilibrium (VLE) of CO2/NO and the density of CO2/O-2. But there are still some clear deficiencies: for example, there have been no data on VLE of CO2/COS and density of CO2/NH3; there are only few points on VLE of CO2/NH3 and CO2/N2O, and density of binary mixtures containing CO, N2O4, COS and H2S. Several new models exhibit advantages for calculating PVTxy properties of CO2 mixtures. For example, Equation of State for Combustion Gases and Combustion Gas-like Mixtures (EOS-CG) shows better accuracy on both phase equilibrium and density than GERG-2008 except for the critical region. Peng-Robinson+ residual Helmholtz energy-based model (PR + EOS/(E,Wilson)(ares)) displays significant improvement in the representation of high-pressure critical region (deviation decreasing from 12.6% to 1% for CO2/O-2/N-2) and wider application of polar and non-polar mixtures for VLE.

  • 26.
    Dong, Shuaili
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. China Univ Petr, Beijing, Peoples R China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, Qi
    China Univ Petr, Beijing, Peoples R China..
    Yu, Zhixin
    Univ Stavanger, Dept Energy & Petr Engn, Stavanger, Norway..
    Volatility of electricity price in Denmark and Sweden2019In: INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS / [ed] Yan, J Yang, HX Li, H Chen, X, ELSEVIER SCIENCE BV , 2019, p. 4331-4337Conference paper (Refereed)
    Abstract [en]

    Under the pressure of global environmental climate change, all countries in the world are developing renewable energy such as hydropower, wind energy, and solar energy As a result, the electricity price varies in different patterns depending on the penetration of renewable energy. In this paper, a non-parametric model is employed to analyze the historical data of electricity spot price from Danish price areas of the Nord Pool (with high percentage of wind power), Swedish price areas of the Nord Pool (with high percentage of hydropower) and PJM market (with little renewable energy penetrated). The objective is to deeply understand the influence of renewable energies on electricity price volatility. It is found that electricity prices are more stable in Swedish price areas as hydropower is a more stable energy source. The electricity price in PJM market is also comparatively stable, only more volatile than Swedish market, as fossil fuels are dominant energy resources. For Danish price areas, the volatility of electricity prices is clearly affected by wind power, which is a highly intermittent energy resource.

  • 27.
    Du, F.
    et al.
    Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, United Kingdom.
    Zhang, J.
    Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, United Kingdom.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Galloway, S.
    Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, United Kingdom.
    Lo, K. L.
    Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, United Kingdom.
    Modelling the impact of social network on energy savings2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 178, p. 56-65Article in journal (Refereed)
    Abstract [en]

    It is noted that human behaviour changes can have a significant impact on energy consumption, however, qualitative study on such an impact is still very limited, and it is necessary to develop the corresponding mathematical models to describe how much energy savings can be achieved through human engagement. In this paper a mathematical model of human behavioural dynamic interactions on a social network is derived to calculate energy savings. This model consists of a weighted directed network with time evolving information on each node. Energy savings from the whole network is expressed as mathematical expectation from probability theory. This expected energy savings model includes both direct and indirect energy savings of individuals in the network. The savings model is obtained by network weights and modified by the decay of information. Expected energy savings are calculated for cases where individuals in the social network are treated as a single information source or multiple sources. This model is tested on a social network consisting of 40 people. The results show that the strength of relations between individuals is more important to information diffusion than the number of connections individuals have. The expected energy savings of optimally chosen node can be 25.32% more than randomly chosen nodes at the end of the second month for the case of single information source in the network, and 16.96% more than random nodes for the case of multiple information sources. This illustrates that the model presented in this paper can be used to determine which individuals will have the most influence on the social network, which in turn provides a useful guide to identify targeted customers in energy efficiency technology rollout programmes.

  • 28.
    Du, Y.
    et al.
    College of Electronics and Information Engineering, Tongji University, Shanghai, China.
    Wang, C.
    College of Electronics and Information Engineering, Tongji University, Shanghai, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Song, Jingjing
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, B.
    School of Mechanical Engineering, Hubei University of Arts and Science, Hubei Province, China.
    Clustering heat users based on consumption data2019In: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, p. 3196-3201Conference paper (Refereed)
    Abstract [en]

    In today's district heating (DH) energy market, it is common to use user functional categories in price models to determine the heat price. However, users in the same category do not necessarily have the same energy consumption patterns, which potentially leads to unfair prices and many other practical issues. Taking into account heat usage characteristics, this work proposes two data-driven methods to cluster DH users to identify similar usage patterns, using practical energy consumption data. Efforts are focused on extracting representative features of users from their daily usage profiles and duration curves, respectively. Employing clustering based on these features, the resulting typical usage patterns and user category distributions are discussed. Our results can serve as potential inputs for future energy price models, demand-side management, and load reshaping strategies.

  • 29.
    Frost, Anna. E.
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Maher, Azaza
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Patterns and temporal resolution in commercial and industrial typical load profiles2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 2684-2689Article in journal (Refereed)
  • 30.
    Galanopoulos, Christos
    et al.
    Bremen Univ, Inst Environm Sci & Technol, D-28359 Bremen, Germany..
    Yan, Jinying
    KTH Royal Inst Technol, Chem Engn, SE-10044 Stockholm, Sweden.;Vattenfall AB, R&D, SE-16992 Stockholm, Sweden..
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Liu, Longcheng
    KTH Royal Inst Technol, Chem Engn, SE-10044 Stockholm, Sweden..
    Impacts of acidic gas components on combustion of contaminated biomass fuels2018In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 111, p. 263-277Article in journal (Refereed)
    Abstract [en]

    The formation of high concentrations of acid gases; in combustion with large variations in fuel qualities, represents a major challenge for energy production from contaminated biomass fuels. This paper provides a comprehensive evaluation of the effects of acid gas formation and retention in the combustion of recycled wood fuels. A model has been developed based on the chemical reactions involved and empirical correlations from plant monitoring and testing. The model has been used to study the behaviour of acidic gas components in critical stages of a bubbling fluidised bed boiler process. Results indicate that the variation in type of fuel contamination is the most important issue to deal with in the combustion of recycled wood fuels. Peaks in the flue gas chlorine concentrations cannot be suppressed easily by conventional flue gas cleaning measures. Upon applying ammonium sulphate dosing for the protection of chlorine induced corrosions, it is sometimes difficult to maintain the required S/Cl ratio when large variations of fuel chlorine occur. Moreover, a high level of chlorine in the fuel can also indirectly affect the emission control of sulphur dioxide because it would require an increased level of ammonium sulphate decomposition, which results in a high level of SO2 in flue gas. The study also shows a beneficial effect of the recirculation of quench water from the flue gas condenser to the boiler. It offers opportunities for the optimisation of flue gas cleaning and flue gas condensation, for improving the efficiencies of water and wastewater treatment, as well as for emission reduction with a sustainable way.

  • 31.
    Guo, K.
    et al.
    University of Stavanger, Stavanger, Norway.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yu, Z.
    University of Stavanger, Stavanger, Norway.
    In-situ heavy and extra-heavy oil recovery: A review2016In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 185, p. 886-902Article in journal (Refereed)
    Abstract [en]

    Due to the growing global energy demand and increasingly limited availability of conventional or easy-to-produce crude oils, extensive attention is being paid to the exploitation of unconventional heavy and extra-heavy oils. However, their inherent properties, characterized by high viscosity and poor mobility, coupled with the complex reservoir configuration, make the desired recovery processes very challenging. Although several in-situ recovery techniques have been employed in oil reservoirs worldwide, most of them are still suffering from low sweep and displacement efficiencies, high capital investment, potential formation damage and negative environmental footprints. This paper aims to provide a comprehensive review of the existing in-situ heavy oil recovery techniques, which fall into three categories of thermal injection, chemical injection and gas injection. Different aspects including the fundamental principles, main features, applicability, and limitations of these recovery processes are elaborated sequentially to illustrate the current technology status. Underlying mechanisms causing the relatively low recovery factors will also be pinpointed. Furthermore, this paper focuses on the technology using novel and active catalysts for simultaneous heavy oil upgrading and recovery, especially in the case of metallic nanocatalysts. Rationales, advantages and challenges regarding this in-situ catalytic upgrading technology will be extensively described for their potential implementation in fields. It is noteworthy that many recovery techniques are still limited to the laboratory scale with needs for further investigations. Therefore, this paper also covers the evaluation standards and analytical methodologies of heavy and extra-heavy oil recovery to establish experimental screening criteria. In the end, economic and environmental aspects of the in-situ catalytic upgrading technology have been briefly discussed. The objective of this review is to present a wide range of expertise related to the in-situ heavy oil recovery processes, and to introduce the in-situ catalytic upgrading technology as an effective and environmental friendly heavy oil recovery process.

  • 32.
    Guo, K.
    et al.
    Univ Stavanger, Norway.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yu, Zhixin
    Univ Stavanger, Norway.
    Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 1, p. 517-525Article in journal (Refereed)
    Abstract [en]

    Nickel (Ni) nanoparticles (NPs) with controlled sizes in the range of 4.9-27.4 nm are synthesized by tuning the ratio of the nickel acetylacetonate precursor and trioctylphosphine in the presence of oleylamine. X-ray diffraction and transmission electron microscopy confirm the formation of the metallic Ni crystal phase and their monodispersed nature. These Ni NPs are found to be effective catalysts for the hydrolytic dehydrogenation of ammonia borane, and their catalytic activities are size-dependent. A volcano-type activity trend is observed with 8.9 nm Ni NPs presenting the best catalytic performance. The activation energy and turnover frequency (TOF) of the 8.9 nm NP catalyst are further calculated to be 66.6 kJ·mol-1 and 154.2 molH2·molNi -1·h-1, respectively. Characterization of the spent catalysts indicates that smaller-sized NPs face severe agglomeration, resulting in poor stability and activity. Three carbon support materials are thus used to disperse and stabilize the Ni NPs. It shows that 8.9 nm Ni NPs supported on Ketjenblack (KB) exhibit higher activity than that supported on carbon nanotubes and graphene nanoplatelets. The agglomeration-induced activity loss is further illustrated by immobilizing 4.9 nm Ni NPs onto KB, which exhibits significantly enhanced activity with a high TOF of 447.9 molH2·molNi -1·h-1 as well as an excellent reusability in the consecutive dehydrogenation of ammonia borane. The high catalytic performance can be attributed to the intrinsic activity of nanoparticulate Ni and the improved activity and stability due to the strong Ni/KB metal-support interactions.

  • 33.
    Guo, Kun
    et al.
    Univ Stavanger, Dept Petr Engn, N-4036 Stavanger, Norway.;Univ Stavanger, Natl IOR Ctr Norway, N-4036 Stavanger, Norway..
    Hansen, Vidar Folke
    Univ Stavanger, Dept Mech & Struct Engn & Mat Sci, N-4036 Stavanger, Norway..
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Malardalen Univ, Dept Energy Bldg & Environm, S-72123 Vasteras, Sweden..
    Yu, Zhixin
    Univ Stavanger, Dept Petr Engn, N-4036 Stavanger, Norway.;Univ Stavanger, Natl IOR Ctr Norway, N-4036 Stavanger, Norway..
    Monodispersed nickel and cobalt nanoparticles in desulfurization of thiophene for in-situ upgrading of heavy crude oil2018In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 211, p. 697-703Article in journal (Refereed)
    Abstract [en]

    Monodispersed nickel (Ni) and cobalt (Co) nanoparticles (NPs) with different sizes are synthesized via the thermal decomposition of organometallic precursors by controlling the reaction temperature and surfactant amount. X-ray diffraction analysis of the as-prepared NP samples shows the formation of cubic Ni metal phases with good crystallinity, while the cubic Co metal samples are semi-amorphous. Transmission electron microscopy characterization further confirms that two Ni NP samples with average sizes of 9 and 27 nm, and Co NPs with an average size of 6 nm are successfully prepared with a narrow size distribution. Furthermore, catalytic performance of these monodispersed NPs towards the hydrodesulfurization (HDS) reaction, which plays a pivotal role in the upgrading of heavy crude oil, is evaluated under reservoir-relevant conditions using thiophene as a sulfur-containing model compound. Different parameters including particle size, catalyst dosage, hydrogen donor ratio, temperature, and reaction duration are systematically studied to optimize the catalytic HDS performance. The morphology and size of the spent NP catalysts after the reaction are also analyzed. The results show that the 9 nm Ni NPs exhibit the best HDS activity and stability compared with other catalysts, which suggests that such well-dispersed Ni NPs are promising candidates for the in-situ upgrading and recovery of heavy crude oil from underground reservoirs.

  • 34.
    Guo, Kun
    et al.
    Univ Stavanger, Norway.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yu, Zhixin
    Univ Stavanger, Norway.
    Metallic nanoparticles for enhanced heavy oil recovery: promises and challenges2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, p. 2068-2073Article in journal (Refereed)
    Abstract [en]

    With the increasing global energy demand, great attention has been focused on utilizing heavy oil and bitumen, which are potentially located ultra-deep underground and cannot be easily recovered. Numerous recovery approaches have been proposed for successful extraction of heavy hydrocarbons from ultra-deep reservoirs. However, these approached are often accompanied by high energy consumption, large amounts of wastewater generation, and undesirable environmental damage. Nanotechnology has appeared as one of the promising technologies for in-situ heavy oil recovery, e.g., employing metal-based nanoparticles. In this article, we provide a brief overview of metallic nanoparticles for in-situ enhanced recovery of heavy oil. It gives a general introduction of the potential advantages of nanoparticle catalysts for heavy oil recovery and illustrates the improved recovery mechanism. Some technology challenges related to this promising technology will also be pinpointed. These technology challenges need to be solved through further research and development before field applications. 

  • 35. Guo, S.
    et al.
    Li, Hailong
    Zhao, J.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Numerical simulation of the direct contact mobilized thermal energy storage2012Conference paper (Refereed)
  • 36.
    Guo, S.
    et al.
    Inner Mongolia University of Science and Technology, Baotou, China.
    Liu, Q.
    Chinese Academy of Sciences, Beijing, China.
    Zhao, J.
    Tianjin University, Tianjin, China.
    Jin, G.
    Inner Mongolia University of Science and Technology, Baotou, 014010, China.
    Wu, W.
    Inner Mongolia University of Science and Technology, Baotou, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology (KTH), Stockholm, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Jin, H.
    Chinese Academy of Sciences, Beijing, China.
    Mobilized thermal energy storage: Materials, containers and economic evaluation2018In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 177, p. 315-329Article in journal (Refereed)
    Abstract [en]

    The transportation of thermal energy is essential for users who are located far away from heat sources. The networks connecting them achieve the goal in efficient heat delivery and reasonable cost, especially for the users with large heat demands. However, it is difficult to satisfy the heat supply of the detached or emergent users with the existing pipelines. Therefore, a promising alternative, called mobilized thermal energy storage (M-TES), was proposed to deliver the heat flexibly without the restriction of networks. In this paper, a review of studies on M-TES is conducted in terms of materials, containers and economic evaluation. The potential candidates of materials, such as sugar alcohols, hydrated salts, alkalies and zeolite are reviewed and compared based on their thermophysical properties, price, advantages and disadvantages. Various containers, including the shell-and-tube, encapsulated, direct-contact, detachable and sorptive types, are discussed from the aspects of configuration, performance and utilization. Furthermore, the studies on the economic evaluation of M-TES systems are summarized and discussed based on the analysis of the economic indicators, including initial cost, operating cost, revenue, subsidy and energy cost. Finally, the challenges and future perspectives for developing M-TES are presented. © 2018 Elsevier Ltd

  • 37.
    Guo, Shaopeng
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhao, J.
    Tianjin University, China .
    Li, Xun
    Tianjin University, China .
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage2013In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 112, p. 1416-1423Article in journal (Other academic)
    Abstract [en]

    Mobilized thermal energy storage (M-TES) system is considered as an attractive alternative to supply heat to distributed heat users, especially when the waste heat from industries is used as a heat source. From our previous study it was known that the charging time of M-TES system was more than four times of the discharging time, which was a critical issue for the application of M-TES. To improve the charging performance of the system and further understand the mechanism of melting process, a 2-dimensional (2D) numerical simulation model was developed in ANSYS FLUENT. The model was validated by the experimental measurements. The results showed that the model could be used for the engineering analysis. With the validated model, different options to shorten the charging time were investigated including increasing flow rate of thermal oil, creating channels before charging and adding wall heating. Correspondingly, around 25%, 26% and 29% of the charging time could be reduced respectively compared to the experiment with a thermal oil flow rate of 9.8 L/min, according to the numerical simulation. In addition, if the last two options could be applied simultaneously, more than half of the melting time might be shortened without changing the flow rate of thermal oil. 

  • 38.
    Haifang, Lyu
    et al.
    Academy of Chinese Energy Strategy, China University of Petroleum, Beijing, Ch.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Academy of Chinese Energy Strategy, China University of Petroleum, Beijing, Ch.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Bin, Xv
    Academy of Chinese Energy Strategy, China University of Petroleum, Beijing, Ch.
    Research on Chinese Solar Photovoltaic Development Based on Green-trading Mechanisms in Power System by Using a System Dynamics Model2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 3960-3965Article in journal (Refereed)
  • 39.
    Hao, Y.
    et al.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Li, W.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Tian, Z.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, 100190, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Stockholm, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Jin, H.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Stockholm, Sweden.
    Integration of concentrating PVs in anaerobic digestion for biomethane production2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, ISSN 0306-2619, Vol. 231, p. 80-88Article in journal (Refereed)
    Abstract [en]

    Biogas produced from anaerobic digestion processes is considered as an important alternative to natural gas and plays a key role in the emerging market for renewable energy. Aiming at achieving a more sustainable and efficient biomethane production, this work proposed a novel energy system, which integrates concentrating photovoltaic/thermal (C-PV/T) hybrid modules into a biogas plant with chemical absorption for biogas upgrading. The investigated energy system was optimized based on the data from an existing biogas plant, and its techno-economic feasibility was evaluated. Results show that about 7% of the heat consumption and 12% of the electricity consumption of the biogas plant can be covered by solar energy, by using the produced heat in a cascade way according to the operating temperature of different processes. The production of biomethane can also be improved by 25,800 N m3/yr (or 1.7%). The net present value of the integrated system is about 2.78 MSEK and the payback period is around 10 years. In order to further improve the economic performance, it is of great importance to lower the capital cost of the C-PV/T module. 

  • 40.
    Hennessy, Jay
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. RISE Research Institutes of Sweden AB.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Mälardalen University, School of Innovation, Design and Engineering.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Räftegård, Oskar
    RISE Research Institutes of Sweden.
    Economic feasibility of commercial heat-to-power technologies suitable for use in district heating networks2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 1721-1727, article id EGYPRO33942Article in journal (Refereed)
    Abstract [en]

    Recent improvements in heat-to-power (HtP) technologies have led to an increase in efficiency at lower temperatures and lower cost. HtP is used extensively in power generation via the steam Rankine cycle, but so far has not been used in district heating (DH). The aim of the study is to analyze the economic feasibility of using HtP technologies in a DH network. This is achieved by establishing suitable technologies and calculating the levelized cost of electricity (LCOE) under conditions that may be found in DH. The result, for the vendors, temperatures and assumptions considered, is a range of 25–292 €/MWh, excluding the cost of heat. The breadth of this range in part reflects the importance of selecting appropriate products to match the heat source temperature.

  • 41.
    Hennessy, Jay
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. RISE Research Institutes of Sweden, Box 857, SE-501 15 Borås, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Flexibility in thermal grids: A review of short-term storage in district heating distribution networks2019In: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, p. 2430-2434Conference paper (Refereed)
    Abstract [en]

    Future energy systems need to be more flexible. The use of cross-sector coupling in combination with thermal storage in thermal grids has been shown to provide such flexibility. The presented study reviews how short-term storage in district heating distribution networks is used or modelled for flexibility, what are the most important parameters, and where the knowledge gaps remain. The results show that the potential for flexibility from district heating has not been fully exploited. Sensible thermal storage tanks are 50-100 times cheaper than electrical storage and storage in the distribution network requires little additional investment in infrastructure. In some countries, the majority of district heating systems have sensible thermal storage tanks, with as much as 64 % of their capacity available for flexibility services. Initial results suggest that only smaller networks are prevented from using the distribution network for storage, but the impacts of this type of use on the physical components and the capacity limitations remain unclear and show a need for standardised methods for analysis. There is a growing interest, both in Europe and China, in the use of short-term storage in district heating to provide flexibility, particularly in the form of ancillary services to the electricity grid, but implementations of these techniques are rare. The presented study identifies a number of remaining knowledge gaps that should be addressed in order to harness available flexibility in district heating.

  • 42.
    Hennessy, Jay
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. RISE Research Institutes of Sweden, Borås, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Towards smart thermal grids: Techno-economic feasibility of commercial heat-to-power technologies for district heating2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 228, p. 766-776Article in journal (Refereed)
    Abstract [en]

    Recent improvements in low-temperature heat-to-power (LTHtP) technologies have led to an increase in efficiency at lower temperatures and lower cost. LTHtP has so far not been used in district heating. The aim of the study is to establish under what conditions the use of existing LTHtP technology is technically and economically feasible using a district heating system as the heat source. The organic Rankine cycle (ORC) is identified as the most interesting LTHtP technology, due to its high relative efficiency and the commercial availability of devices operating at temperatures in the district heating operating range. The levelised cost of electricity of several ORC devices is calculated for temperatures found in district heating, assuming a zero cost of heat. A case study from Sweden is used to calculate the levelised cost of electricity, the net present value and payback period, based on income from the electricity produced, excluding taxes. Hourly spot market electricity prices from 2017 are used, as well as forecast scenarios for 2020, 2030 and 2040. A sensitivity study tests the importance of electricity price, cost of heat and capital/installation cost. Based on the case study, the best levelised cost of electricity achieved was 26.5 EUR/MWh, with a payback period greater than 30 years. Under current Swedish market conditions, the ORC does not appear to be economically feasible for use in district heating, but the net present value and payback period may be significantly more attractive under other countries’ market conditions or with reduced capital costs. For a positive net present value in the Swedish market the capital cost should be reduced to 1.7 EUR/W installed, or the average electricity price should be at least 35.2 EUR/MWh, if the cost of heat is zero. The cost of heat is an important factor in these calculations and should be developed further in future work.

  • 43.
    Hu, Y.
    et al.
    KTH.
    Li, Hailong
    KTH.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Integration of Evaporative Gas Turbine with Oxy-Fuel Combustion for Carbon Dioxide Capture2010In: International Journal of Green Energy, ISSN 1543-5075, E-ISSN 1543-5083, Vol. 7, no 6, p. 615-631Article in journal (Refereed)
    Abstract [en]

    This paper studied the integration of Evaporative Gas Turbine (EvGT) cycle with oxy-fuel combustion for CO2 capture. The impact of key parameters on system electrical efficiency, such as the oxygen purity, Water/Gas ratio (W/G) has been investigated concerning thermal efficiency. The performance of dry recycle and wet recycle also has be analyzed and compared. Simulation results shows that: (1) 97% can be considered as the optimum oxygen purity taking into account the trade-off between the air separation unit (ASU) consumption penalty of producing higher-purity oxygen and electrical efficiency; (2) there exists an optimum point of W/G for both EvGT and EvGT combined with oxy-fuel combustion CO2 capture technology; (3) dry recycle has a considerably higher electrical efficiency comparing with wet recycle, but more cooled water can be saved in the wet recycle. The performance of EvGT cycle was also compared to the combined cycle (CC) when CO2 capture was considered. The comparison shows that CC has a higher net power output and electrical efficiency than the EvGT cycle no matter if combined with oxy-fuel combustion CO2 capture technology or not.

  • 44.
    Hu, Y.
    et al.
    Royal Institute of Technology, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Sweden.
    Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion2014In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 130, no 1, p. 543-551Article in journal (Refereed)
    Abstract [en]

    Oxy-coal combustion has different flue gas composition from the conventional air-coal combustion. The different composition further results in different properties, such as the absorption coefficient, emissivity, and density, which can directly affect the heat transfer in both radiation and convection zones of utility boilers. This paper numerically studied a utility boiler of oxy-coal combustion and compares with air-coal combustion in terms of flame profile and heat transferred through boiler side walls in order to understand the effects of different operating conditions on oxy-coal boiler retrofitting and design. Based on the results, it was found that around 33vol% of effective O2 concentration ([O2]effective) the highest flame temperature and total heat transferred through boiler side walls in the oxy-coal combustion case match to those in the air-coal combustion case most; therefore, the 33vol% of [O2]effective could result in the minimal change for the oxy-coal combustion retrofitting of the existing boiler. In addition, the increase of the moisture content in the flue gas has little impact on the flame temperature, but results in a higher surface incident radiation on boiler side walls. The area of heat exchangers in the boiler was also investigated regarding retrofitting. If boiler operates under a higher [O2]effective, to rebalance the load of each heat exchanger in the boiler, the feed water temperature after economizer can be reduced or part of superheating surfaces can be moved into the radiation zone to replace part of the evaporators

  • 45.
    Hu, Y.
    et al.
    Royal Institute of Technology .
    Li, X.
    Tianjin University, School of Mechanical Engineering, China .
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering.
    Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems2013In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 112, p. 747-754Article in journal (Refereed)
    Abstract [en]

    Introducing CO2 capture and storage (CCS) into the power systems requires the re-investigation of the load balance for the electrical grid. For the oxy-coal combustion capture technology, the energy use of ASU can be shifted between the peak-load and off-peak-load periods, which may bring more benefits. In this paper, peak and off-peak (POP) operations for the air separation unit (ASU) with liquid oxygen storage were studied based on a 530MW coal-fired power system. According to the simulation results, the oxy-coal combustion power system running POP is technically feasible that it can provide a base load of 496MW during the off-peak period and a peak load of 613MW during the peak period. And the equivalent efficiency of the power system running POP is only 0.3% lower than the one not running POP. Moreover, according to the economic assessments based on the net present value, it is also economically feasible that the payback time of the investment of the oxy-coal combustion power system running POP is about 13years under the assumptions of 10% discount rate and 2.5% cost escalation rate. In addition, the effects of the difference of on-grid electricity prices, daily peak period, investment for POP operations, and ASU energy consumption were also analyzed, concerning the net present value.

  • 46.
    Hu, Y.
    et al.
    Cranfield University, Bedford, United Kingdom.
    Tewari, A.
    Cranfield University, Bedford, United Kingdom.
    Varga, L.
    Cranfield University, Bedford, United Kingdom.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    System dynamics of oxyfuel power plants with liquid oxygen energy storage2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 3727-3733Article in journal (Refereed)
    Abstract [en]

    Traditional energy storage systems have a common feature: the generating of secondary energy (e.g. electricity) and regenerating of stored energy (e.g. gravitational potential, and mechanical energy) are separate rather than deeply integrated. Such systems have to tolerate the energy loss caused by the second conversion from primary energy to secondary energy. This paper is concerned with the system dynamics of oxyfuel power plants with liquid oxygen energy storage, which integrates the generation of secondary energy (electricity) and regeneration of stored energy into one process and therefore avoids the energy loss caused by the independent process of regeneration of stored energy. The liquid oxygen storage and the power load of the air separation unit are self-adaptively controlled based on current-day power demand, day-ahead electricity price and real-time oxygen storage information. Such an oxyfuel power plant cannot only bid in the day-ahead market with base load power but also has potential to provide peak load power through reducing the load of the air separation unit in peak time. By introducing reasoning rules with fuzzy control, the oxygen storage system has potential to be further extended by integrating renewable energy resources into the system to create a cryogenic energy storage hub. 

  • 47.
    Hu, Yukun
    et al.
    Royal Inst Technol.
    Li, Hailong
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Techno-economic evaluation of the evaporative gas turbine cycle with different CO(2) capture options2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 89, no 1, p. 303-314Article in journal (Refereed)
    Abstract [en]

    The techno-economic evaluation of the evaporative gas turbine (EvGT) cycle with two different CO(2) capture options has been carried out. Three studied systems include a reference system: the EvGT system without CO(2) capture (System I), the EvGT system with chemical absorption capture (System II), and the EvGT system with oxyfuel combustion capture (System III). The cycle simulation results show that the system with chemical absorption has a higher electrical efficiency (41.6% of NG LHV) and a lower efficiency penalty caused by CO(2) capture (10.5% of NG LHV) compared with the system with oxyfuel combustion capture. Based on a gas turbine of 13.78 MW, the estimated costs of electricity are 46.1 $/MW h for System I. while 70.1 $/MW h and 74.1 $/MW h for Systems II and III, respectively. It shows that the cost of electricity increment of chemical absorption is 8.7% points lower than that of the option of oxyfuel combustion. In addition, the cost of CO(2) avoidance of System II which is 71.8 $/tonne CO(2) is also lower than that of System III, which is 73.2 $/tonne CO(2). The impacts of plant size have been analyzed as well. Results show that cost of CO(2) avoidance of System III may be less than that of System II when a plant size is larger than 60 MW.

  • 48.
    Hu, Yukun
    et al.
    Royal Inst Technol .
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Li, Hailong
    Effects of flue gas recycle on oxy-coal power generation system2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 97, no SI, p. 255-263Article in journal (Refereed)
    Abstract [en]

    This paper examined and assessed various configuration options about emission removal including particles. SOx and NOx in an oxy-coal combustion system for CO2 capture. A performance analysis was conducted in order to understand the impacts of those options concerning process design, process operation and system efficiency. Results show that different flue gas recycle options have clear effects on the emissivity and absorptivity of radiating gases in boiler due to the change of flue gas compositions. The maximum difference amongst various options can be up to 15% and 20% for emissivity and absorptivity respectively. As a result, the heat transfer by radiation can vary about 20%. The recycle options also have impacts on the design of air heater and selective-catalytic-reduction (SCR) preheater. This is due to that the largely varied operating temperatures in different options may result in different required areas of heat exchangers. In addition, the dew point of flue gas and the boiler efficiency are affected by the configurations of flue gas recycle as well.

  • 49. Jianguo, Li
    et al.
    Shaokai, Zhang
    Li, Hailong
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Xinhua, Ouyang
    Liulian, Huang
    Yonghao, Ni
    Lihui, Chen
    Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers2018In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 251, p. 1-6Article in journal (Refereed)
  • 50.
    Jiyang, Xie
    et al.
    Beijing University of Posts and Telecommunications, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhanyu, Ma
    Beijing University of Posts and Telecommunications, China..
    Qie, Sun
    Shandong University, China.
    Wallin, Fredrik
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Zhongwei, Si
    Beijing University of Posts and Telecommunications, China.
    Jun, Guo
    Beijing University of Posts and Telecommunications, China.
    Analysis of Key Factors in Heat Demand Prediction with Neural Networks2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 2965-2970Article in journal (Refereed)
    Abstract [sv]

    The development of heat metering has promoted the development of statistic models for the prediction of heat demand, due to the large amount of available data, or big data. Weather data have been commonly used as input in such statistic models. In order to understand the impacts of direct solar radiance and wind speed on the model performance comprehensively, a model based on Elman neural networks (ENN) was adopted, of which the results can help heat producers to optimize their production and thus mitigate costs. Compared with the measured heat demand, the introduction of wind speed and direct solar radiation has opposite impacts on the performance of ENN and the inclusion of wind speed can improve the prediction accuracy of ENN. However, ENN cannot benefit from the introduction of both wind speed and direct solar radiation simultaneously. 

12345 1 - 50 of 220
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf