https://www.mdu.se/

mdu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jani, Yahya
    et al.
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM), Sweden.
    Burlakovs, Juris
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Augustsson, Anna
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Marques, Marcia
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Hogland, William
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Characterization and toxicity of hazardous wastes from an old Swedish glasswork dumpManuscript (preprint) (Other academic)
    Abstract [en]

    More than 34 old glasswork sites in the southeastern part of Sweden pose a permanent threat to human and environmental health due to the presence of toxic metals in open dumps with glass waste. The possibility of leaching of metals from different fractions of the disposed waste needed to be assessed. In the present investigation, leachate from fine fraction (soil plus glass particles < 2 mm) was characterized as following: pH (7.3), TOC (< 2%), organic content (4.4%), moisture content (9.7), COD (163 mg/kg) and trace elements content, being the values in accordance to the Swedish guidelines for landfilling of inert materials. However, very high metals content was found in the fine fraction as well as in all colors of the glass fraction (≥ 2 mm), whose values were compatible to hazardous waste landfill class. Tests with Lepidium sativum growing in the fine fraction as substrate revealed chronic toxicity expressed as inhibition of root biomass growth in 11 out of 15 samples. Additionally, leachate from fine fractions posed acute toxicity to genetically modified E. coli (Toxi-Chromotest). This study highlights the importance of combining physicochemical characterization with toxicity tests for both solid waste and leachate obtained from different waste fractions for proper hazardousness assessment supporting decision making on remediation demands.

  • 2.
    Jani, Yahya
    et al.
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM), Sweden.
    Burlakovs, Juris
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Augustsson, Anna
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Marques, Marcia
    Rio de Janeiro State University, Brazil.
    Hogland, William
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Physicochemical and toxicological characterization of hazardous wastes from an old glasswork dump at southeastern part of Sweden2019In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 237, p. 1-8, article id 124568Article in journal (Refereed)
    Abstract [en]

    More than 34 old glasswork sites in the southeastern part of Sweden pose a permanent threat to human and environmental health due to the presence of toxic trace elements in open dumps with glass waste. The possibility of leaching of trace elements from different fractions of the disposed waste needed to be assessed. In the present investigation, leachate from a mixture of soil and waste glass of particle sizes of less than 2mm (given the name fine fraction) was characterized by analyzing the pH (7.3), total organic content (TOC<2%), organic matter content (4.4%), moisture content (9.7%), chemical oxygen demand (COD, 163mg/kg) and trace elements content, being the values in accordance to the Swedish guidelines for landfilling of inert materials. However, very high trace elements content was found in the fine fraction as well as in all colors of waste glass, whose values were compatible to hazardous waste landfill class. Tests with Lepidium sativum growing in the fine fraction as substrate revealed chronic toxicity expressed as inhibition of root biomass growth in 11 out of 15 samples. Additionally, leachate from fine fractions posed acute toxicity to genetically modified E. coli (Toxi-Chromotest). This study highlights the importance of combining physicochemical characterization with toxicity tests for both solid waste and leachate obtained from different waste fractions for proper hazardousness assessment supporting decision making on remediation demands.

  • 3.
    Marchand, Charlotte
    et al.
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Hogland, William
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Kaczala, Fabio
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Jani, Yahya
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Linnéuniversitetet, Institutionen för biologi och miljö (BOM), Sweden.
    Marchand, Lilian
    INRA, France.
    Augustsson, Anna
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Hijri, Mohamed
    Université de Montréal, Canada.
    Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests2016In: International journal of phytoremediation, ISSN 1522-6514, E-ISSN 1549-7879, Vol. 18, no 11, p. 1136-1147Article in journal (Refereed)
    Abstract [en]

    Several Gentle Remediation Options (GRO), e.g. plant-based options (phytoremediation), singly and combined with soil amendments, can be simultaneously efficient for degrading organic pollutants and either stabilizing or extracting trace elements (TE). Here, a 5-month greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and combined with a compost addition (30% w/w), to treat soils contaminated by petroleum hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After five months, total soil Pb significantly decreased in the compost-amended soil planted with M. sativa, but not total soil Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and survival, and shoot Pb concentrations (3.8 mg/kg DW). Residual risk assessment after the phytoremediation trial showed a positive effect of compost amendment on plant growth and earthworm development. The O2 uptake by soil microorganisms was lower in the compost-amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of the phytoremediation option based on M. sativa cultivation and compost amendment for remediating PHC and Pb contaminated soils.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf