https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
Begrens søket
1 - 22 of 22
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chen, Z.
    et al.
    Guangdong University of Education, Guangzhou, China.
    Zhang, L.
    South China University of Technology.
    Song, Han
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik.
    Investigating the impacts of included angles on flow and heat transfer in cross-corrugated triangular ducts with field synergy principle2013Inngår i: Thermal Science, ISSN 0354-9836, E-ISSN 2334-7163, Vol. 17, nr 3, s. 823-832Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Included angles (a) have vital effect on the flow and heat transfer in cross-corrugated triangular ducts. The friction factor and Nusselt number were estimated at different Reynolds numbers from both experiments and simulations. Results show that the flow in the duck with a = 90° has the largest friction factor and Nusselt number. However, the included angle influences the flow and heat transfer in cross-corrugated triangular ducts in different ways. The field synergy principle was used to explore the mechanism of the different impacts of the included angle. Results show that the flow in the cross-corrugated triangular duct with a = 90° has the smallest domain averaged included angle (bm), which implies the best synergy performance. The results of the field synergy principle were also validated by analyzing the performance evaluation criterion and studying the velocity vector and temperature distributions.

  • 2.
    Guziana, Bozena
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Song, Han
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Daianova, Lilia
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Thorin, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    SCENARIOS FOR WASTE-TO-ENERGY USE - SWEDISH PERSPECTIVE.2011Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    The use of waste for energy purposes becomes increasingly interesting both with respect to waste management and for the energy systems. The decisions on alternative uses of waste for energy are mainly influenced by different policies, waste management, energy supply and use, as well as technologies. Two important issues, namely, a clear priority of waste prevention in waste management within EU and the growing concern for food losses and food waste at global and at national level, shall be carefully considered and addressed. This paper proposes scenarios for waste to energy systems with focus on Sweden and with a broader EU approach is applied: Biofuels Sweden, Electric vehicles and Bioenergy Europe. As baseline for the scenario development inventory of waste-to-energy related policies and goals on international, national, regional and local level as well as inventory of existing scenarios and reports with future trends is made. A low waste availability level is recommended to be included in sensitivity analysis for scenarios.

  • 3.
    Guziana, Bozena
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Song, Han
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Policy Based Scenarios for Waste-to-Energy Use: Swedish Perspective2014Inngår i: Waste and Biomass Valorization, ISSN 1877-2641, Vol. 5, nr 4, s. 679-688Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The use of waste for energy purposes becomes increasingly interesting with respect to waste management and the energy systems. The decisions on alternative uses of waste for energy are mainly influenced by different policies, waste management, energy supply and use, as well as technologies. Two important issues, namely, a clear priority of waste prevention in waste management within EU and the growing concern for food losses and food waste at global and national level, shall be carefully considered and addressed. This paper proposes policy based scenarios for waste-to-energy systems with a focus on Sweden and with a broader EU approach. As baseline for the scenario development an inventory of waste-to-energy related policies and goals on international, national, regional and local level as well as inventory of existing scenarios and reports with future trends is made. The main substitute for fossil fuels and the possibilities for renewable energy export are basic elements that define scenarios. Biofuels and electricity are identified as main substitutes for the fossil fuels. A low waste availability level is recommended to be included in sensitivity analysis for scenarios. This paper assumes relative decoupling in Low Waste scenario in 2030, and absolute decoupling first in 2050.

  • 4.
    Guziana, Bozena
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Song, Han
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Thorin, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Waste-to-energy in a Polish perspective2012Konferansepaper (Annet vitenskapelig)
    Abstract [en]

     Energy recovery from waste becomes increasingly interesting both with respect to waste management and for the sustainable energy supply. The REMOWE (Regional Mobilizing of Sustainable Waste-to-Energy Production) project, seeks to facilitate the implementation of sustainable systems for waste-to-energy in the project regions. Based on investigations done within the REMOWE project this paper discusses increased waste-to-energy utilization in Poland with focus on a comparison with the current state in Sweden. There are big differences between Sweden and Poland, and between Lower Silesia Voivodship in Poland and Västmanland County in Sweden. The REMOWE project through its outputs and discussions during meetings support transfer of technology, knowledge and best practice. Procedural justice and early involvement of public can increase social acceptance and successful implementation of projects regarding incineration, biogas production and separate collection of biodegradable waste.

    Fulltekst (pdf)
    Wastetoenergy.Polishperspective
  • 5.
    Han, Song
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Modeling and optimization of a regional waste-to-energy system: a case study in central Sweden2011Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Conversion of wastes to energy by different technologies can contribute greatly to treating waste sustainably, reducing dependency on imported fossil fuels and protecting environment. A static model of energy balance for a certain region is constructed to simulate and optimize the energy system with the purpose to minimize the total costs, including collection, transportation and conversion or treatment of wastes, distribution of energy products as well as import and export of wastes and energy products. The objective is to find optimum positions for building new energy plants and planting energy crops for two scenarios. How to achieve a regional fossil-fuel-free energy system is also analyzed through a case study of the County of Västmanland in central Sweden. The boundary conditions are assumed to be the limit of local waste generation, capacity of energy plants, and the demands of energy products.

  • 6.
    Han, Song
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Regional Energy Systems with Retrofitted Combined Heat and Power (CHP) Plants2012Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Fossil fuel depletion, economic development, urban expansion and climate change present tough challenges to municipal- and regional-scale energy systems. Regional energy system planning, including waste treatment, renewable energy supply, energy efficiency, and climate change, are considered essential to meet these challenges and move toward a sustainable society. This thesis includes studies on energy system from municipal waste, potential for a fossil fuel-independent regional energy system with increased renewable energy products using waste as one of energy sources, and the performance of biomass-fired combined heat and power (CHP) plants. A top-down method is adopted to organize the studies, from national waste-to-energy (WtE) scenarios to individual energy plants.

    The first study considers the overall potential contribution of WtE to energy supply and greenhouse gas (GHG) emissions mitigation in Sweden until 2050 under several different scenarios. Depending on WtE scenario considered, the study shows that WtE can supply energy between 38 and 186 TWh and mitigate between CO2 of 1 and 12 Mt per year by 2050 based on the baseline of year 2010.

    At a regional level, static and dynamic optimization models with a focus on WtE are developed for two regions in Sweden and Finland. The former is used to investigate the possibilities of optimal positioning of new energy plants, retrofitting existing energy plants and planting energy crops. The latter case study is on regional heat and power production using biogas generated from agricultural and livestock wastes. Centralized biogas production units perform better than distributed production regarding energy and carbon balance though the net energy output is negligible. However, a significant GHG emission can be reduced compared to the present status.

    Retrofitting existing conventional CHP plants is another option for improving regional energy system. The study shows that integrating heat-demanded processes such as drying, bioethanol and pellet production with existing CHP plants can improve overall energy efficiency and power output, increase annual operation time and reduce production cost as well as mitigate GHG emissions.

     It is recommended that building new WtE/energy plants at optimum sites, upgrading the existing energy plants, expanding the agricultural/forestry waste/residues output (biomass) and planting more energy crops shall be taken into considerations for the future regional energy systems.

    Fulltekst (pdf)
    fulltext
  • 7.
    Han, Song
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Retrofitting CHP Plant and Optimization of Regional Energy System2011Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The use of biomass-based combined heat and power (CHP) plants is considered by the EU administration to be an effective way to increase the use of renewables in the energy system, to reduce greenhouse gas emissions and to alleviate the dependency on imported fossil fuels. At present in Sweden, most of the CHP plants are operated in part-load mode because of variations in heat demand. Further use of the potential heat capacity from CHP plants is an opportunity for integration with other heat-demanding processes. Retrofitting the conventional CHP plants by integration with bioethanol and pellet production processes is considered a feasible and efficient way to improve the plants’ performances.

     

    Modeling and simulation of the CHP plant integrated with feedstock upgrading, bioethanol production and pellet production is performed to analyze the technical and economic feasibility. When integrating with bioethanol production, the exhaust flue gas from the CHP plant is used to dry the hydrolysis solid residues (HSR) instead of direct condensation in the flue gas condenser (FGC). This drying process not only increases the overall energy efficiency (OEE) of the CHP plant but also increases the power output relative to the system using only a FGC. Furthermore, if steam is extracted from the turbine of the CHP plant and if it is used to dry the HSR together with the exhaust flue gas, pellets can be produced and the bioethanol production costs can be reduced by 30% compared with ethanol cogeneration plants.

     

    Three optional pellet production processes integrated with an existing biomass-based CHP plant using different raw materials are studied to determine their annual performance. The option of pellet production integrated with the existing CHP plant using exhaust flue gas and superheated steam for drying allows for a low specific pellet production cost, short payback time and significant CO2 reduction. A common advantage of the three options is a dramatic increase in the total annual power production and a significant CO2 reduction, in spite of a decrease in power efficiency.

     

    The retrofitted biomass-based CHP plants play a crucial role in the present and future regional energy system. The total costs are minimized for the studied energy system by using wastes as energy sources. Analyses of scenarios for the coming decades are performed to describe how to achieve a regional fossil fuel-free energy system. It is possible to achieve the target by upgrading and retrofitting the present energy plants and constructing new ones. The conditions and obstacles have also been presented and discussed through optimizing the locations for proposed new energy plants and planting energy crops.

    Fulltekst (pdf)
    Kappa
  • 8.
    Han, Song
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Bozena, Guziana
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Guilnaz, Mirmoshtaghi
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Eva, Thorin
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling. KTH, Stockholm, Sweden.
    WASTE-TO-ENERGY SCENARIOS ANALYSIS BASED ON ENERGY SUPPLY AND DEMAND IN SWEDEN2012Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Energy recovery from waste treatment is of great significance for the waste management and sustainable energy supply. Sweden has proposed an ambitious vision of zero net greenhouse gases emissions by 2050, which makes most possible use of resources that the waste represents necessary. This paper is to study how the waste-to-energy (WtE) can interact with other forms of renewable energy to affect the energy supply and demand in Sweden. Based on an assumption of waste generation-treatment balance in 2050 with two cases, power preference and motor fuels preference, are investigated under diverse WtE scenarios. The results indicate that WtE production can contribute to the primary energy supply by 38 to 186 TWh, amounting to 6% to 47% of the total. The power production can be ranged from 7 to 35 TWh and motor fuels from 2 to 34 TWh through under different WtE scenarios. Furthermore, the final mitigation of CO2 emission is estimated to be from 1 to 12 Mt in 2050 compared to base year of 2010, really depending on which WtE scenario is considered.

  • 9.
    Han, Song
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Eva, Thorin
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Bozena, Guziana
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Tuomas, Huopana
    University of Eastern Finland.
    Jinyue, Yan
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    A dynamic model to optimize a regional energy system with waste and crops as energy resources for greenhouse gases mitigation2012Inngår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 46, nr 1, s. 522-532Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    A dynamic model of a regional energy system has been developed to support sustainable waste treatmentwith greenhouse gases (GHG) mitigation, addressing the possibility for development towardsa regional fossil fuel-free society between 2011 and 2030. The model is based on conventional mixedinteger linear programming (MILP) techniques to minimize the total cost of regional energy systems. TheCO2 emission component in the developed model includes both fossil and biogenic origins whenconsidering waste, fossil fuels and other renewable sources for energy production. A case study for thecounty of Västmanland in central Sweden is performed to demonstrate the applicability of the developedMILP model in five distinct scenarios. The results show significant potential for mitigating CO2 emissionby gradually replacing fossil fuels with different renewable energy sources. The MILP model can be usefulfor providing strategies for treating wastes sustainably and mitigating GHG emissions in a regionalenergy system, which can function as decision bases for formulating GHG reduction policies andassessing the associated economic implications.

  • 10.
    Han, Song
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Thorin, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Jan, Yinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Annual performance analysis and comparison of pellet production integrated with an existing combined heat and power plant2011Inngår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 102, nr 10, s. 6317-6325Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Three optional pellet production processes integrated with an existing biomass-based CHP plant using different raw materials (wood chips and solid hydrolysis residues) are studied. The year is divided into 12 periods, and the integrated biorefinery systems are modeled and simulated for each period. The annual economic performance of three integrated biorefinery systems is analyzed based on the simulation results. The option of pellet production integrated with the existing CHP plant with the exhaust flue gas and superheated steam as drying mediums has the lowest specific pellet production cost of 105 €/tpellet, the shortest payback time of less than 2 years and the greatest CO2 reduction of the three options. An advantage in common among the three options is a dramatic increase of the total annual power production and significant CO2 reduction in spite of a small decrease of power efficiency.

  • 11.
    Han, Song
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling. Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling. Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Techno-economic analysis of an integrated biorefinery system for poly-generation of power, heat, pellets and bioethanol2014Inngår i: International Journal of Energy Research, ISSN 0363-907X, E-ISSN 1099-114X, Vol. 38, nr 5, s. 551-563Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bioethanol is an alternative to fossil fuels in the transportation sector. The use of pellet for heating is also an efficient way to mitigate greenhouse gas emissions. This paper evaluates the techno-economic performance of a biorefinery system in which an existing combined heat and power (CHP) plant is integrated with the production of bioethanol and pellet using straw as feedstock. A two-stage acid hydrolysis process is used for bioethanol production, and two different drying technologies are applied to dry hydrolysis solid residues. A sensitivity analysis is performed on critical parameters such as the bioethanol selling price and feedstock price. The bioethanol production cost is also calculated for two cases with either 10 year or 15 year payback times. The results show that the second case is currently a more feasible economic configuration and reduces production costs by 36.4%-77.3% compared to other types of poly-generation plants that are not integrated into existing CHP plants. 

  • 12.
    Han, Song
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Thorin, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    School of Chemical Science, Royal Institute of Technology, Stockholm, Sweden.
    Techno-economic analysis of an integrated biorefinerysystem for poly-generation of power, heat, pelletand bioethanol2014Inngår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, nr 38, s. 551-563Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Abstract: Bioethanol is considered an alternative to fossil fuels in the transportation sector. The use of pellets for heating is another efficient way to mitigate greenhouse gas emissions. This paper evaluates the techno-economic performance of a biorefinery system in which an existing combined heat and power plant integrates with the productions of bioethanol and pellets using straw as feedstock. A two-stage acid hydrolysis process for bioethanol production is used, and two different drying technologies are chosen for drying hydrolysis solid residues. A sensitivity analysis on critical parameters, such as the bioethanol selling price and feedstock price, is performed. The bioethanol production cost is also calculated for two cases at the conditions of ten-year and five-year payback time. The results show that the first case is a more feasible economic configuration at present, having an over 30% production cost reduction compared with the conventional cogeneration plants of bioethanol and solid fuel.

    Fulltekst (pdf)
    fulltext
  • 13.
    Han, Song
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Starfelt, Fredrik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Daianova, Lilia
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat2012Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 90, nr 1/SI, s. 32-37Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    One of the by-products from bioethanol production using woody materials is lignin solids, which can be utilized as feedstock for combined heat and power (CHP) production. In this paper, the influence of integrating a drying process into a biomass-based polygeneration system is studied, where the exhaust flue gas is used to dry the lignin solids instead of direct condensation in the flue gas condenser (FGC). The evaporated water vapor from the lignin solids is mixed with the drying medium for consequent condensation. Thus, the exhaust flue gas after the drying still has enough humidity to produce roughly the same amount of condensation heat as direct condensation in the existing configuration. The influence of a drying process and how it interacts with the FGC in CHP production as a part of the  polygeneration system is analyzed and evaluated. If a drying process is integrated with the polygeneration system, overall energyefficiency is only increased by 3.1% for CHP plant, though the power output can be increased by 5.5% compared with the simulated system using only FGC.

  • 14.
    Hartman, Steven
    et al.
    Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. Stefansson Arctic Inst Iceland, Humanities Environm Circumpolar Observ, Akureyri, Iceland.
    Degeorges, Patrick
    Ecole Normale Super Lyon, Anthropocene Curriculum, Lyon, France.;Michel Serres Inst, Complex Syst Inst 20, Lyon, France.;INRIA, Datasphere Team, Paris, France.;French Portal Environm Humanities, Salzburg, Austria.;French Minist Environm, Paris, France..
    "DON'T PANIC": Fear and Acceptance in the Anthropocene2019Inngår i: Interdisciplinary Studies in Literature and Environment: ISLE, ISSN 1076-0962, E-ISSN 1759-1090, Vol. 26, nr 2, s. 456-472Artikkel i tidsskrift (Fagfellevurdert)
  • 15.
    Huopanaa, Tuomas
    et al.
    University of Eastern Finland.
    Niska, Harri
    University of Eastern Finland.
    Jääskeläinen, Ari
    Savonia University of Appled Sciences, Finland.
    Lõõnik, Jaan
    Estonian Regional and Local Development Agency, Estland.
    den Boer, Emilia
    Wroclaw University of Technology, Polen.
    Song, Han
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik. Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik. Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    A REGIONAL MODEL FOR SUSTAINABLE BIOGAS  PRODUCTION: Case study: North Savo, Finland. REMOWE Report, Integrated report no: O5.3.3, O5.3.6, O5.4.3, O5.4.4, O5.6.12012Rapport (Fagfellevurdert)
  • 16.
    Huopanaa, Tuomas
    et al.
    University of Eastern Finland.
    Song, Han
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Kolehmainen, Mikko
    University of Eastern Finland.
    Niska, Harri
    University of Eastern Finland.
    A regional model for sustainable biogas electricity production: A case study from a Finnish province2013Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 102, s. 676-686Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    A regional model for sustainable biogas electricity production was formulated and tested for a Finnishprovince, North-Savo. By using the model the aim was to support decision making for reducing greenhousegas (GHG) emissions and increasing renewable energy (RE) production in the studied region inthe biogas electricity production system. The system boundary of the model included transportation ofwaste, biogas production, heat and electricity production, as well as the delivery of heat and digestateto the end users. When electricity production was maximized in the studied region, the electricity productionand GHG emissions were 20 GW h/year and 24 kt/year of CO2 equivalent, respectively. WhenGHG emissions were minimized, the electricity production and GHG emissions were 20 GW h/year and23 kt/year of CO2 equivalent, respectively. By producing electricity of 20 GW h/year, the maximumGHG reductions were roughly 74% of the theoretical maximum GHG emissions of 90 kt/year of CO2 equivalentin both cases. The regional electricity production potential of 20 GW h/year was only 21% of themaximum electricity production potential of 94 GW h/year. The locations of biogas plants, regional relativeGHG emissions, potential feedstocks and regional electricity production were optimized in bothcases in the studied region.

  • 17.
    Li, Hailong
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Han, Song
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Dahlquist, Erik
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Thorin, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Yan, Jinyue
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Potentials of energy saving and efficiency improvement from lighting and space heating: a case study of SAAB2012Konferansepaper (Fagfellevurdert)
  • 18.
    Lõõnik, Jaan
    et al.
    Estonian Regional and Local Development Agency (ERKAS).
    Saarepera, Reljo
    Estonian Regional and Local Development Agency (ERKAS).
    Käger, Maarja
    Estonian Regional and Local Development Agency (ERKAS).
    Sogenbits, Thea
    Estonian Regional and Local Development Agency (ERKAS).
    Freienthal, Priit
    Estonian Regional and Local Development Agency (ERKAS).
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik. Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Song, Han
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik. Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Guziana, Bozena
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik. Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Jääskeläinen, Ari
    The Municipal Federation of Savonia University of Applied Sciences (SUA).
    Eskelinen, Tuomo
    The Municipal Federation of Savonia University of Applied Sciences (SUA).
    Kajanus, Miika
    The Municipal Federation of Savonia University of Applied Sciences (SUA).
    Huopana, Tuomas
    University of Eastern Finland (UEF) .
    Niska, Harri
    University of Eastern Finland (UEF) .
    den Boer, Emilia
    Wroclaw University of Technology / Institute of Environmental Protection Engineering.
    den Boer, Jan
    Wroclaw University of Technology / Institute of Environmental Protection Engineering.
    Szpadt, Ryszard
    Wroclaw University of Technology / Institute of Environmental Protection Engineering.
    Behrendt, Anna
    Ostfalia University of Applied Sciences, Fachhochschule Braunschweig / Wolfenbüttel (BUA).
    Vasilic, Dejan
    Ostfalia University of Applied Sciences, Fachhochschule Braunschweig / Wolfenbüttel (BUA).
    Ahrens, Thorsten
    Ostfalia University of Applied Sciences, Fachhochschule Braunschweig / Wolfenbüttel (BUA).
    Anne, Olga
    Klaipeda University (KLU).
    Balčiũnas, Arũnas
    Klaipeda University (KLU).
    GUIDELINE ON ACTION PLANS AND STRATEGIES TO MOBILIZE WASTE-TO-ENERGY PRODUCTION: REMOWE report,  Report no: 4.3.1, December 20122012Rapport (Fagfellevurdert)
  • 19.
    Song, Han
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Dotzauer, Erik
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Nordlander, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Modeling and optimization of a regional waste-to-energy system: A case study in central Sweden2013Inngår i: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 33, nr 5, s. 1315-1316Artikkel i tidsskrift (Annet vitenskapelig)
  • 20.
    Thorin, Eva
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Daianova, Lilia
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Lindmark, Johan
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Nordlander, Eva
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Song, Han
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Jääskeläinen, Ari
    The Municipal Federation of Savonia University of Applied Sciences.
    Malo, Laura
    Centre for Economic Development, Transport and the Environment for North Savo (CNS).
    den Boer, Emilia
    Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
    den Boer, Jan
    WAMECO S.C., ul. Malinowa 7, 55-002 Kamieniec Wrocławski, Poland.
    Szpadt, Ryszard
    Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
    Belous, Olga
    Klaipeda University (KLU).
    Kaus, Taivo
    Estonian Regional and Local Development Agency (ERKAS).
    Käger, Marja
    Estonian Regional and Local Development Agency (ERKAS).
    State of the art In the Waste to Energy Area: Technology and Systems2011Rapport (Annet vitenskapelig)
    Fulltekst (pdf)
    O411_state_of_art_final
  • 21.
    Thorin, Eva
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    den Boer, Emilia
    Institute of Environment Protection Engineering, Wrocław University of Technology.
    Belous, Olga
    Klaipeda University.
    Song, Han
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Waste to Energy- a review2012Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Waste materials can be used as a valuable resource for reuse, recycling or energy recovery. In this paper a review on using waste as energy resource, done in the REMOWE project, included in the EU funded Baltic Sea Region Programme, is presented. Five main conversion paths have been identified; combustion, pyrolysis, gasification, anaerobic digestion and fermentation. Combustion and anaerobic digestion are mature and well-proven technologies for waste treatment but improvements are needed to make the processes more efficient as energy conversion processes. For anaerobic digestion feedstock pre-treatment, avoidance of inhibition, mixing, residues utilization, and monitoring and control are identified development areas. A more recent trend is development of dry digestion technology for the treatment of municipal waste. The possible improvements of the combustion process using waste as fuel includes plant efficiency, improved emission control and ash handling. Pyrolysis and gasification have been used for waste treatment but the technologies are still in the development stage. Identified development areas are process operation conditions, gas and by-product quality, gas cleaning and plant efficiency.

    Studies comparing waste to energy systems found do not give a clear picture of what waste to energy technology that is most favourable. The results of the comparisons are dependent on the conditions chosen for the study such as location, economic activities, population, and possible system combinations.

    Fulltekst (pdf)
    A10544
  • 22.
    Thorin, Eva
    et al.
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Guziana, Bozena
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Song, Han
    Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.
    Jääskeläinen, Ari
    The Municipal Federation of Savonia University of Applied Sciences .
    Szpadt, Ryszard
    Wroclaw University of Technology / Institute of Environmental Protection Engineering.
    Vasilic, Dejan
    Ostfalia University of Applied Sciences, Fachhochschule Braunschweig / Wolfenbüttel.
    Ahrens, Thorsten
    Ostfalia University of Applied Sciences, Fachhochschule Braunschweig / Wolfenbüttel.
    Anne, Olga
    Klaipeda University .
    Lõõnik, Jaan
    Estonian Regional and Local Development Agency (ERKAS).
    Potential future waste-to-energy systems2012Rapport (Annet vitenskapelig)
    Abstract [en]

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia.

    The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge and agriculture waste.

    The potential future waste-to-energy systems in the partner regions include increased utilization of available waste resources. Examples of resources possible to use are straw that could be used for ethanol production and biowaste from households and manure that could be used for biogas production. If the utilization in all partner regions would reach the same level as already exists in the County of Västmanland it would correspond to an increased energy supply of 3 TWh/year which corresponds to about 2.5 % of the total energy use in the partner regions year 2008.

    An important aspect of future anaerobic processes for biogas production is the possibility to use the residue. West Lithuanian biogas production residue is planned to be dewatered up to 90 % of dry matter to make future utilization options possible.

    Pre-processing is necessary to be able to use the residue from digestion of solid waste as fertilizer. The pre-processing should include crushing, removal of metals, wood and plastics, and pulping. Without pre-processing it is possible to combust the residues with energy utilisation. Results from an investigation of the residues from biogas production tests using substrates from the project partner regions show a remaining energy potential of the digestate corresponding to 17 to 50% of the biogas energy. A combination of digestate combustion and fertilizer use could be a possibility.

    Hydrothermal carbonization, HTC, is a process that could be of interest to use for treating digestate in order both to utilize the energy left after biogas production but also for sanitation of the digestate. In this process heat is released and coal is produced. This process could also be of interest for waste-to-energy conversion of waste which is usually not usable for other biological process like e.g. biogas production, for example sharp leaved rush, straw or leaves from gardening etc. Initial tests on pulp and paper waste show promising results.

    Among the possible processes for increasing the output of biogas from anaerobic digestion using ultrasound technology for thickening of surplus waste water sludge can be mentioned. It allows increasing the biogas production up to 30 % and reducing the amount of organic substances in the digested sewage sludge by up to 25 %. Another area of possible improvement is the mixing in the digester. The mixing is important for distribution of microorganisms and nutrition, inoculation of fresh feed, homogenizing of the material and for the removal of end products of the metabolism. Studies of the digester for biowaste in the County of Västmanland indicate that about 30 % of digester volume can have dead and stagnant zones.

    2

    Waste-to-energy utilisation could also be possible to realise by further development and introduction of new processes and concepts. An option for solving the problem of old sewage sludge could be to use it in a gasifier to convert it to energy rich gases. Microbiological conversion of waste can be further developed to produce several different products, such as heat, power, fuels and chemicals, the development of so-called biorefineries. Also the biorefinery‘s water management can be renewed in order to remove toxic substances, minimize environmental impacts and produce pure, clean water. Finnoflag Oy has developed a technology that converts waste materials into e.g. fuels, chemicals, plastic and rubber via low-energy routes. The Finnoflag technology is based on the PMEU (Portable Microbe Enrichment Unit) which is a new innovative instrument for use in the microbe detection process and that is designed to create an optimal growth environment for microbes.

    For fibrous and well-structured biowaste dry digestion could be a good option for biogas production. Several different configurations have been tested in Germany. The garage digestion method has the advantage that an extensive pre- treatment of substrate is not necessary and no pumps or stirrers, which can be destroyed by disturbing materials, are involved. However, the efficiency of garage digesters is low compared to other digestion methods due to lack of effective substrate turbation. More research work is needed to improve the efficiency. Tests of five existing dry digestion processes show that the Tower-digester is the most suitable dry digestion method for household waste. Among the reviewed plants the Dranco-tower digester showed the best efficiency in reference to biogas potential. The plant design is robust enough to handle substrates like household waste with fractions of disturbing materials. The mixing in the reactor is based on the force of gravity and the used pumps are powerful and very resistant.

    Pyrolysis is a process of interest for converting wood based waste into energy products such as gas, bio-oil and/or solid fuel/carbon. This has been identified as a process suitable for a new business model with a franchise based model, offering an earning opportunity for small size entrepreneurs.

    Possible improvement of existing and new waste-to-energy systems also includes increasing the overall efficiency of the utilization of waste resources by integration of several processes. A study on integrating pellets production from the residues from straw-based ethanol production with an existing combined heat and power plant shows that the total production cost can be reduced by the integration.

    Possible development of waste-to-energy systems for the partner regions could be the following:

     Estonian - biogas production using the organic waste, use of the digestate as fertilizer on demand or combustion for power and heat production, recycling plants for paper, plastics and other recyclable wastes and combustion for power and heat production after recycling

     North Savo, Finland- the same options as for Estonia is of interest. Added to this is the potential for power and heat production from large amount of wood waste. Also the possibility for pellet production from wood waste could be of interest.

     Western Lithuania- the same system as mentioned for Finland is also of interest for western Lithuania.

    3

     

     Lower Silesia, Poland- also for Lower Silesia high amounts of organic wastes is suitable to use for biogas production in anaerobic digestion. Recovered derived fuel (RDF) is already used as fuel for power and heat production. There are also some attempts to involve combustion of residual mixed waste in 1-2 of the most densely populated areas.

     County of Västmanland, Sweden- Here a system for separate collection of the biowaste from households, digestion of the fraction together with ley crop silage from regional farmers to produce biogas and use of the digestate from the digestion process as fertilizer at farmland already exists and a new power and heat plant using recovered derived fuels is under construction. Further waste- to-energy plants for production of bioethanol from straw and biogas from agricultural waste could be possible.

    The potential future waste-to-energy systems are not only dependent on available technologies for waste-to-energy conversion but also on the development within the waste and energy areas including also economic and political aspects. There is a growing interest for waste prevention in waste management within the EU, and growing concern about food losses and food waste at global and national levels. During past decades the waste amounts have steadily increased with economic growth but due to waste prevention actions a decoupling of the waste amount and economic growth is foreseen. This has to be considered in development of future waste-to-energy systems. Further, policies and goals concerning fossil fuel free transportation systems and low carbon energy systems is of importance.

    Analysis of combined previous proposed scenarios for energy demand and use development and waste amount development for waste-to-energy in Sweden 2010 to 2050 shows that the contribution of waste-to-energy to the total energy supply in 2050 varies from 6 to 47 % depending on the scenarios combined. The lowest contribution occur for scenarios with low waste amounts combined with energy scenarios with low changes in energy demand while the highest contribution occurs for scenarios with high amount of waste combined with energy scenarios with large decrease in energy demand.

    Fulltekst (pdf)
    fulltext
1 - 22 of 22
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf