mdh.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aslanidou, Ioanna
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zaccaria, Valentina
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Rahman, Moksadur
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Oostveen, Mark
    Micro Turbine Technology bv, Eindhoven, Netherlands.
    Olsson, Tomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. RISE SICS, Västerås, Sweden.
    Kyprianidis, Konstantinos
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Towards an Integrated Approach for Micro Gas Turbine Fleet Monitoring, Control and Diagnostics2018Conference paper (Refereed)
    Abstract [en]

    Real-time engine condition monitoring and fault diagnostics results in reduced operating and maintenance costs and increased component and engine life. Prediction of faults can change the maintenance model of a system from a fixed maintenance interval to a condition based maintenance interval, further decreasing the total cost of ownership of a system. Technologies developed for engine health monitoring and advanced diagnostic capabilities are generally developed for larger gas turbines, and generally focus on a single system; no solutions are publicly available for engine fleets. This paper presents a concept for fleet monitoring finely tuned to the specific needs of micro gas turbines. The proposed framework includes a physics-based model and a data-driven model with machine learning capabilities for predicting system behaviour, combined with a diagnostic tool for anomaly detection and classification. The integrated system will develop advanced diagnostics and condition monitoring for gas turbines with a power output under 100 kW.

  • 2.
    Rahman, Moksadur
    et al.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Anders, Malmquist
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Modeling and Simulation of an Externally Fired Micro-Gas Turbine for Standalone Polygeneration Application2016In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 138, no 11, article id 112301Article in journal (Refereed)
  • 3.
    Rahman, Moksadur
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kyprianidis, Konstantinos
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    An Approach For Feedforward Model Predictive Control For Pulp and Paper Applications: Challenges And The Way Forward2017In: Paper Conference and Trade Show, PaperCon 2017: Renew, Rethink, Redefine the Future, Volume 3, TAPPI Press, 2017, Vol. 10, p. 1441-1450Conference paper (Refereed)
    Abstract [en]

    Due to the naturally varying feedstock, significant residence time, insufficient measurements and complex nature of the delignification process, producing pulp with consistent quality i.e. stable kappa number with sufficiently high yield is a challenging task that requires multi-variable process control. A wide variety of control structures, ranging from classical concepts like cascade control, feedforward, ratio control, and parallel control to more modern concepts like model-based predictive control, is used in pulp and paper industries all over the world. In this paper, a survey of model-based predictive control will be presented along with the control challenges that lie within the chemical pulping process. The potential of this control concept for overcoming the aforementioned technical challenges will also be discussed in the second part of the paper. Particular focus will be given on the use of near-infrared spectroscopy based soft-sensors coupled with dynamic process models as an enabler for feedforward model-based predictive control. Overall, the proposed control concept is expected to significantly improve process performance, in the presence of measurement noise and various complex chemical process uncertainties common in pulp and paper applications.

  • 4.
    Rahman, Moksadur
    et al.
    Mälardalen University, School of Business, Society and Engineering.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering.
    Kyprianidis, Konstantinos
    Mälardalen University, School of Business, Society and Engineering.
    Jansson, Johan
    Billerud Korsnäs, Gävle, Sweden.
    Dahlquist, Erik
    Mälardalen University, School of Education, Culture and Communication.
    Model based Control and Diagnostics strategies for a Continuous Pulp Digester2018In: Paper Conference and Trade Show, PaperCon 2018, 2018, Vol. 1, p. 136-147Conference paper (Refereed)
    Abstract [en]

    Kappa number, which essentially indicates the amount of lignin left in the pulp after cooking, is the most important physical quantity linked to the quality and economics of a Kraft-pulp mill. Controlling the Kappa number is a difficult task mainly due to the naturally varying feedstock, significant residence time, insufficient measurements and complex nature of the delignification process. Moreover, faults such as screen clogging, hang-ups and channeling in the process often occur and increase the operational costs considerably. In this work, the possibility of feedforwarding the lignin content of incoming wood chips, by a near-infrared spectroscopic measurement of one of the major process disturbances, to a model predictive controller, is investigated by means of modeling and simulation studies. Additionally, a simple Bayesian network based diagnostics approach is proposed to detect the continuous digester faults.

  • 5.
    Rahman, Moksadur
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zaccaria, Valentina
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Xin, Zhao
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kyprianidis, Konstantinos
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Diagnostics-Oriented Modelling of Micro Gas Turbines for Fleet Monitoring and Maintenance Optimization2018In: Processes, ISSN 2227-9717, E-ISSN 1099-5862, Vol. 6, no 11Article in journal (Refereed)
    Abstract [en]

    The market for the small-scale micro gas turbine is expected to grow rapidly in the coming years. Especially, utilization of commercial off-the-shelf components is rapidly reducing the cost of ownership and maintenance, which is paving the way for vast adoption of such units. However, to meet the high-reliability requirements of power generators, there is an acute need of a real-time monitoring system that will be able to detect faults and performance degradation, and thus allow preventive maintenance of these units to decrease downtime. In this paper, a micro gas turbine based combined heat and power system is modelled and used for development of physics-based diagnostic approaches. Different diagnostic schemes for performance monitoring of micro gas turbines are investigated.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf