mdh.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hozhabri, Melika
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Human Detection and Tracking with UWB radar2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    As robots and automated machineries are increasingly replacing the manual operations, protecting humans who are working in collaboration with these machines is becoming an increasingly important task. Technologies such as cameras, infra-red and seismic sensors as well as radar systems are used for presence detection and localization of human beings. Among different radar sensors, Ultra Wide Band (UWB) radar has shown some advantages such as providing the distance to the object with good precision and high performance even under adverse weather and lightning conditions. In contrary to traditional radar systems which use a specific frequency and high output power, UWB Radar uses a wide frequency band (>500 MHz) and low output power to measure the distance to the object.

    The purpose of this thesis is to investigate UWB radar system for protecting humans around dangerous machinery in environments like mines where conditions like dirt, fog, and lack of light cause other technologies such as cameras to have a limited functionality. Experimental measurements are done to validate the hardware and to investigate its constraints.

    Comparison between two dominant UWB radar technologies is performed: Impulse and M-sequence UWB radar for static human being detection. The results show that M-sequence UWB radar is better suited for detecting the static human target at larger distances. The better performance comes at the cost of higher power usage. Measurements of human walking in different environments is done to measure and compare the background noise and radar reflection of the human body. A human phantom is developed and choice of material and shape for it is discussed. The reflection of the phantom is analyzed and compared with the reflection of a human trunk. Furthermore, the choice of frequency in discerning human beings is discussed.

    Signal processing algorithms and filters are developed for tracking of the human presence, position and movements. These algorithms contain pre-processing of the signal such as removing the background, detection and positioning techniques.

  • 2.
    Hozhabri, Melika
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Otterskog, Magnus
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Petrović, Nikola
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ekström, Martin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Experimental Comparison Study of UWB Technologies for Static Human Detection2016In: IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB 2016) ICUWB 2016, 2016Conference paper (Refereed)
    Abstract [en]

    This paper compares two dominant Ultra Wide Rand(UWB) radar technologies Impulse and M-sequence for static human being detection in free space. The hardware and software platform for each system is described separately. These two radar platform performances are tested in real conditions and the results show that M-sequence UWB radar is better suited for detecting the static human target in larger distances.

  • 3.
    Hozhabri, Melika
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Risman, Per Olov
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Petrovic, Nikola
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Comparison of UWB Radar Back-Scattering by the Human Torso and a Phantom2018Conference paper (Refereed)
    Abstract [en]

    An Ultra Wide Band(UWB) radar is used to measure the cross section of a human phantom indifferent polarizations of the receiver antenna. The choice of material and shape for the human phantom is discussed. The material used in the experiment(wet sand) dielectric properties measured by a retromodeling technique and then calculated by mixture formulas. The appropriate frequency choice for the application is discussed.

  • 4.
    Hozhabri, Melika
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. IS (Embedded Systems).
    Risman, Per Olov
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. IS (Embedded Systems).
    Petrovic, Nikola
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. IS (Embedded Systems).
    Study of the Environment Effect by M-Sequence UWB Radar on Detection of a Walking Human2016In: 2016 IEEE Conference on Antenna Measurements & Applications (CAMA) CAMA 2016, 2016, article id 7815740Conference paper (Refereed)
    Abstract [en]

    This paper presents an experimental comparison study of human movement and presence detection in different environments using ultra-wide-band (UWB) M-Sequence radar. The benchmarking measurements are made in an anechoic chamber and repeated in an open office environment. The wave forms of the background noise and scattered amplitudes of a human body are measured and compared. The result is analyzed and discussed. A set of detection algorithms and filters which are developed to track the human movement and presence is presented and the tracking results in these two environments are compared to each other.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf