https://www.mdu.se/

mdu.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, L.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Desideri, U.
    Bioethanol Production from Lignocellulosic Biomass, Evaluation of the Potential Bioethanol Production in Three Swedish Regions2009Conference paper (Refereed)
  • 2.
    Daianova, Lilia
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Evaluation of a regional bioenergy system with local production of biofuel for transportation, integrated with a CHP plant2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 92, p. 739-749Article in journal (Refereed)
    Abstract [en]

    The share of renewable liquid fuels (ethanol, fatty acid methyl ester, biogas, and renewable electricity) in the total transportation fuel in Sweden, has increased by the end of 2009 to such level that e.g. domestic bioethanol production is unable to satisfy current ethanol fuel demand. Regional small-scale ethanol production can assist the region in covering the regional needs in transport fuel supply.

    Current case study system includes the production of ethanol, biogas, heat and power from locally available cereals straw. A mixed integer programming (MIP) model is developed for cost optimization of regional transport fuel supply (ethanol, biogas and petrol). The model is applied for two cases, one when ethanol production plant is integrated with an existing CHP plant (polygeneration), and one with a standalone ethanol production plant.

    The optimization results show that for both cases the changes in ethanol production costs have the biggest influence on the costs for supplying regional passenger car fleet with transport fuel. Petrol fuel price and straw production costs have also a significant effect on costs for supplying cars with transport fuel for both standalone ethanol production and integrated production system.

    By integrating the ethanol production process with a CHP plant, the costs for supplying regional passenger car fleet with transport fuel can be cut by 31%, from 150 to 104 €/MW h fuel, which should be compared with E5 costs of 115 €/MW h (excl VAT).

  • 3.
    Daianova, Lilia
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Local production of bioethanol to meet the growing demands of a regional transport system2011In: Proceedings of World Renewable Energy Congress 2011, May 2011, Linköping, Sweden, 2011Conference paper (Refereed)
    Abstract [en]

    : Energy security and the mitigation of greenhouse gas emissions (GHG) are the driving forces behind the development of renewable fuel sources worldwide. In Sweden, a relatively rapid development in bioethanol usage in transportation has been driven by the implementation of national taxation regulations on carbon neutral transport fuels. The demand for bioethanol to fuel transportation is growing and cannot be met through current domestic production alone. Lignocellulosic ethanol derived from agricultural crop residues may be a feasible alternative source of ethanol to secure a consistent regional fuel supply in Swedish climatic conditions. This paper analyzes how the regional energy system can contribute to reducing CO2 emissions by realizing local small scale bioethanol production and substituting petrol fuel with high blend ethanol mixtures for private road transport. The results show that about 13 000 m3 of bioethanol can be produced from the straw available in the studied region and that this amount can meet the current regional ethanol fuel demand. Replacing the current demand for petrol fuel for passenger cars with ethanol fuel can potentially reduce CO2 emissions from transportation by 48%.

  • 4.
    Guziana, Bozena
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Song, Han
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    SCENARIOS FOR WASTE-TO-ENERGY USE - SWEDISH PERSPECTIVE.2011Conference paper (Other academic)
    Abstract [en]

    The use of waste for energy purposes becomes increasingly interesting both with respect to waste management and for the energy systems. The decisions on alternative uses of waste for energy are mainly influenced by different policies, waste management, energy supply and use, as well as technologies. Two important issues, namely, a clear priority of waste prevention in waste management within EU and the growing concern for food losses and food waste at global and at national level, shall be carefully considered and addressed. This paper proposes scenarios for waste to energy systems with focus on Sweden and with a broader EU approach is applied: Biofuels Sweden, Electric vehicles and Bioenergy Europe. As baseline for the scenario development inventory of waste-to-energy related policies and goals on international, national, regional and local level as well as inventory of existing scenarios and reports with future trends is made. A low waste availability level is recommended to be included in sensitivity analysis for scenarios.

  • 5.
    Han, Song
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Starfelt, Fredrik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 90, no 1/SI, p. 32-37Article in journal (Refereed)
    Abstract [en]

    One of the by-products from bioethanol production using woody materials is lignin solids, which can be utilized as feedstock for combined heat and power (CHP) production. In this paper, the influence of integrating a drying process into a biomass-based polygeneration system is studied, where the exhaust flue gas is used to dry the lignin solids instead of direct condensation in the flue gas condenser (FGC). The evaporated water vapor from the lignin solids is mixed with the drying medium for consequent condensation. Thus, the exhaust flue gas after the drying still has enough humidity to produce roughly the same amount of condensation heat as direct condensation in the existing configuration. The influence of a drying process and how it interacts with the FGC in CHP production as a part of the  polygeneration system is analyzed and evaluated. If a drying process is integrated with the polygeneration system, overall energyefficiency is only increased by 3.1% for CHP plant, though the power output can be increased by 5.5% compared with the simulated system using only FGC.

  • 6.
    Starfelt, Fredrik
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinuye
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Increased renewable electricity production in combined heat and power plants by introducing ethanol production2009Conference paper (Refereed)
    Abstract [en]

    The development towards high energy efficiency and low environmental impact by humaninteractions, has led to a change in many levels of society. Due to the introduction of penalties oncarbon dioxide emissions and other economic instruments, the energy industry is striving towardsenergy efficiency improvement and climate mitigation by switching from fossil to renewablefuels. Biomass-based combined heat and power (CHP) plants connected to district heatingnetworks have a need to find uses for excess heat to produce electricity during summer when theheat demand is low. On the other hand, the transport sector is contributing substantially to theincreased CO2 emissions, which have to be reduced. One promising alternative to address the twochallenging issues is the integration of vehicle fuel production with biomass based CHP plants. Inthis paper, the configuration and operation profits in terms of electricity, heat and ethanol fuelfrom cellulosic biomass are presented. A case study of a commercial small-scale CHP plant hasbeen carried out using simulation and modeling tools. The results clearly show that electricityproduction can be increased when CHP production is integrated with cellulosic ethanolproduction. The findings presented also show that the economical benefits of the energy systemcan be realized with near-term commercially available technology

  • 7.
    Starfelt, Fredrik
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    The impact of lignocellulosic ethanol yields in polygeneration with district heating: A case study2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 92, p. 791-799Article in journal (Refereed)
    Abstract [en]

    The development towards high energy efficiency and low environmental impact from human interactions

    has led to changes at many levels of society. As a result of the introduction of penalties on carbon

    dioxide emissions and other economic instruments, the energy industry is striving to improve energy

    efficiency and climate mitigation by switching from fossil fuels to renewable fuels. Biomass-based combined

    heat and power (CHP) plants connected to district heating networks have a need to find uses for the

    excess heat they produce in summer when the heat demand is low. On the other hand, the transport sector

    makes a substantial contribution to the increasing CO

    2

    emissions, which have to be reduced. One

    promising alternative to address these challenging issues is the integration of vehicle fuel production

    with biomass-based CHP plants. This paper presents the configuration and operating profits in terms

    of electricity, heat and ethanol fuel from cellulosic biomass. A case study of a commercial small scale

    CHP plant was conducted using simulation and modeling tools. The results clearly show that electricity

    production can be increased when CHP production is integrated with cellulosic ethanol production. The

    findings also show that the economic benefits of the energy system can be realized with near-term commercially

    available technology, and that the benefits do not rely solely on ethanol yields.

  • 8.
    Thorin, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Guziana, Bozena
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Wallin, Fredrik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Wossmar, Susanne
    Handelskammaren Mälardalen.
    Degerfeldt, Viveka
    Handelskammaren Mälardalen.
    Granath, Lennart
    Länsstyrelsen Västmanland.
    CURRENT STATUS OF THE WASTE- TO- ENERGY CHAIN IN THE COUNTY OF VÄSTMANLAND, SWEDEN2011Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    REMOWE_WP3_Current_status_PP1_final_version
  • 9.
    Thorin, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Lindmark, Johan
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Nordlander, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Song, Han
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Jääskeläinen, Ari
    The Municipal Federation of Savonia University of Applied Sciences.
    Malo, Laura
    Centre for Economic Development, Transport and the Environment for North Savo (CNS).
    den Boer, Emilia
    Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
    den Boer, Jan
    WAMECO S.C., ul. Malinowa 7, 55-002 Kamieniec Wrocławski, Poland.
    Szpadt, Ryszard
    Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
    Belous, Olga
    Klaipeda University (KLU).
    Kaus, Taivo
    Estonian Regional and Local Development Agency (ERKAS).
    Käger, Marja
    Estonian Regional and Local Development Agency (ERKAS).
    State of the art In the Waste to Energy Area: Technology and Systems2011Report (Other academic)
    Download full text (pdf)
    O411_state_of_art_final
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf