mdh.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Blackman, Corey
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Evaluation of a Modular Thermally Driven Heat Pump for Solar Heating and Cooling Applications2015Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Exploiting solar energy technology for both heating and cooling purposes has the potential of meeting an appreciable portion of the energy demand in buildings throughout the year. By developing an integrated, multi-purpose solar energy system, that can operate all twelve months of the year, a high utilisation factor can be achieved which translates to more economical systems. However, there are still some techno-economic barriers to the general commercialisation and market penetration of such technologies. These are associated with high system and installation costs, significant system complexity, and lack of knowledge of system implementation and expected performance. A sorption heat pump module that can be integrated directly into a solar thermal collector has thus been developed in order to tackle the aforementioned market barriers. This has been designed to aid in the development of cost-effective pre-engineered solar energy system kits that can provide both heating and cooling.

    This thesis summarises the characterisation studies of the operation of individual sorption modules, sorption module integrated solar collectors and a full solar heating and cooling system employing sorption module integrated collectors. Key performance indicators for the individual sorption modules showed cooling delivery for 6 hours at an average power of 40 W and a temperature lift of 21°C. Upon integration of the sorption modules into a solar collector, measured solar radiation energy to cooling energy conversion efficiencies (solar cooling COP) were between 0.10 and 0.25 with average cooling powers between 90 and 200 W/m2 collector aperture area. Further investigations of the sorption module integrated collectors implementation in a full solar heating and cooling system yielded electrical cooling COP ranging from 1.7 to 12.6 with an average of 10.6 for the test period.

    Additionally, simulations were performed to determine system energy and cost saving potential for various system sizes over a full year of operation for a 140 m2 single-family dwelling located in Madrid, Spain. Simulations yielded an annual solar fraction of 42% and potential cost savings of €386 per annum for a solar heating and cooling installation employing 20m2 of sorption integrated collectors.

  • 2.
    Blackman, Corey
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Dalarna University, Falun, Sweden.
    Bales, Chris
    Dalarna University, Falun, Sweden.
    Experimental evaluation of a novel absorption heat pump module for solar cooling applications2015Ingår i: Science and Technology for the Built Environment, ISSN 2374-4731, Vol. 21, nr 3, s. 323-331Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Given the environmental benefits of utilizing free thermal energy sources, such as waste heat and solar energy for cooling purposes, many developments have come about in thermally driven cooling. However, there are still some barriers to the general commercialization and market penetration of such technologies that are associated with system and installation costs, complexity, and maintenance. In efforts to overcome these limitations, a novel absorption heat pump module has been developed and tested. The module comprises a fully encapsulated sorption tube containing hygroscopic salt sorbent and water as a refrigerant, sealed under vacuum, and within which there are no moving parts. The absorption module consists of two main components, one that alternately functions as an absorber or generator and other that alternates between the roles of evaporator and condenser. The module therefore operates cyclically between a cooling delivery phase and a regeneration phase. Each module has a significant energy storage capacity with cooling delivery phases ranging from 6–10 h in length with temperature lifts between 16◦C and 25◦C. The modules are optimized for integration directly into a solar thermal collector, for roof or fac¸ade installation, for daytime regeneration and night-time cooling delivery. Collector integrated modules would be completely modular maintenance-free absorption heat pumps with similar installation requirements to standard solar thermal collectors. This article describes the test method and performance characteristics of the individual absorption modules. 

  • 3.
    Blackman, Corey
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Bales, Chris
    Högskolan Dalarna, Sweden.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Techno-Economic Evaluation of Solar-Assisted Heating and Cooling Systems with Sorption Module Integrated Solar Collectors2015Ingår i: INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY, SHC 2014, 2015, Vol. 70, s. 409-417Konferensbidrag (Övrigt vetenskapligt)
  • 4.
    Blackman, Corey
    et al.
    SaltX Technology, Hägersten, Stockholm, Sweden; Dalarna University, Borlänge, Sweden.
    Gluesenkamp, K. R.
    Oak Ridge National Laboratory, Oak Ridge, TN, United States.
    Malhotra, M.
    Oak Ridge National Laboratory, Oak Ridge, TN, United States.
    Yang, Z.
    Oak Ridge National Laboratory, Oak Ridge, TN, United States; Purdue University, West Lafayette, IN, United States.
    Study of optimal sizing for residential sorption heat pump system2019Ingår i: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 150, s. 421-432Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Gas-driven sorption heat pumps (GDSHP) show significant potential to reduce primary energy use, associated emissions and energy costs for space heating and domestic hot water production in residential applications. This study considered a bivalent heating system consisting of a sorption heat pump and a condensing boiler, and focuses on the optimal heating capacity of each of these components relative to each other. Two bivalent systems were considered: one based on a solid chemisorption cycle (GDSHPA), and one based on a resorption cycle (GDSHPB). Simulations of year-round space heating loads for two single-family houses, one in New York and the other Minnesota, were carried out and the seasonal gas coefficient of performance (SGCOP) calculated. The sorption heat pump's design heating capacity as a fraction of the bivalent system's total heating capacity was varied from 0 to 100%. Results show that SGCOP was effectively constant for sorption heat pump design capacity greater than 41% of the peak bivalent GDSHPA design capacity in Minnesota, and 32% for GDSHPB. In New York, these values were 42% and 34% for GDSHPA and GDSHPB respectively. The payback period was also evaluated based on postulated sorption heat pump component costs. The fastest payback was achieved with sorption heat pump design capacity between 22 and 44%.

  • 5.
    Blackman, Corey
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Hallström, Olof
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Bales, Chris
    Högskolan Dalarna.
    Demonstration of Solar Heating andCooling System using Sorption Integrated Solar Thermal Collectors2014Ingår i: EuroSun 2014 Conference Proceedings, 2014, s. 523-532Konferensbidrag (Refereegranskat)
    Abstract [en]

    Producing cost-competitive small and medium-sized solar cooling systems is currently a significant challenge. Due to system complexity, extensive engineering, design and equipment costs; the installation costs of solar thermal cooling systems are prohibitively high. In efforts to overcome these limitations, a novel sorption heat pump module has been developed and directly integrated into a solar thermal collector. The module comprises a fully encapsulated sorption tube containing hygroscopic salt sorbent and water as a refrigerant, sealed under vacuum with no moving parts. A 5.6m2 aperture area outdoor laboratory-scale system of sorption module integrated solar collectors was installed in Stockholm, Sweden and evaluated under constant re-cooling and chilled fluid return temperatures in order to assess collector performance. Measured average solar cooling COP was 0.19 with average cooling powers between 120 and 200 Wm-2 collector aperture area. It was observed that average collector cooling power is constant at daily insolation levels above 3.6 kWhm-2 with the cooling energy produced being proportional to solar insolation. For full evaluation of an integrated sorption collector solar heating and cooling system, under the umbrella of a European Union project for technological innovation, a 180m2 large-scale demonstration system has been installed in Karlstad, Sweden. Results from the installation commissioned in summer 2014 with non-optimised control strategies showed average electrical COP of 10.6 and average cooling powers between 140 and 250 Wm-2 collector aperture area. Optimisation of control strategies, heat transfer fluid flows through the collectors and electrical COP will be carried out in autumn

     

  • 6.
    Zhu, C.
    et al.
    Building Energy Research Center, Department of Building Science, Tsinghua University, Beijing, China; Oak Ridge National Laboratory, Building Equipment Research, Energy & Transportation Science Division, Oak Ridge, United States.
    Gluesenkamp, K. R.
    Oak Ridge National Laboratory, Building Equipment Research, Energy & Transportation Science Division, Oak Ridge, United States.
    Yang, Z.
    Lyle School of Civil Engineering, Purdue University, West Lafayette, United States.
    Blackman, Corey
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. SaltX Technology AB, Stockholm, Sweden; Dalarna University, Borlänge, Sweden.
    Unified thermodynamic model to calculate COP of diverse sorption heat pump cycles: Adsorption, absorption, resorption, and multistep crystalline reactions2019Ingår i: International journal of refrigeration, ISSN 0140-7007, E-ISSN 1879-2081, Vol. 99, s. 382-392Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A straightforward thermodynamic model is developed in this work to analyze the efficiency limit of diverse sorption systems. A method is presented to quantify the dead thermal mass of heat exchangers. Solid and liquid sorbents based on chemisorption or physical adsorption are accommodated. Four possible single-effect configurations are considered: basic absorption or adsorption (separate desorber, absorber, condenser, and evaporator); separate condenser/evaporator (two identical sorbent-containing reactors with a condenser and a separate direct expansion evaporator); combined condenser/evaporator (one salt-containing reactor with a combined condenser/evaporator module); and resorption (two sorbent-containing reactors, each with a different sorbent). The analytical model was verified against an empirical heat and mass transfer model derived from component experimental results. It was then used to evaluate and determine the optimal design for an ammoniate salt-based solid/gas sorption heat pump for a space heating application. The effects on system performance were evaluated with respect to different working pairs, dead thermal mass factors, and system operating temperatures. The effect of reactor dead mass as well as heat recovery on system performance was also studied for each configuration. Based on the analysis in this work, an ammonia resorption cycle using LiCl/NaBr as the working pair was found to be the most suitable single-effect cycle for space heating applications. The maximum cycle heating coefficient of performance for the design conditions was 1.50 with 50% heat recovery and 1.34 without heat recovery. 

1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf