mdh.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Canhanga, Betuel
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Asymptotic Methods for Pricing European Option in a Market Model With Two Stochastic Volatilities2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Modern financial engineering is a part of applied mathematics that studies market models. Each model is characterized by several parameters. Some of them are familiar to a wide audience, for example, the price of a risky security, or the risk free interest rate. Other parameters are less known, for example, the volatility of the security. This parameter determines the rate of change of security prices and is determined by several factors. For example, during the periods of stable economic growth the prices are changing slowly, and the volatility is small. During the crisis periods, the volatility significantly increases. Classical market models, in particular, the celebrated Nobel Prize awarded Black–Scholes–Merton model (1973), suppose that the volatility remains constant during the lifetime of a financial instrument. Nowadays, in most cases, this assumption cannot adequately describe reality. We consider a model where both the security price and the volatility are described by random functions of time, or stochastic processes. Moreover, the volatility process is modelled as a sum of two independent stochastic processes. Both of them are mean reverting in the sense that they randomly oscillate around their average values and never escape neither to very small nor to very big values. One is changing slowly and describes low frequency, for example, seasonal effects, another is changing fast and describes various high frequency effects. We formulate the model in the form of a system of a special kind of equations called stochastic differential equations. Our system includes three stochastic processes, four independent factors, and depends on two small parameters. We calculate the price of a particular financial instrument called European call option. This financial contract gives its holder the right (but not the obligation) to buy a predefined number of units of the risky security on a predefined date and pay a predefined price. To solve this problem, we use the classical result of Feynman (1948) and Kac (1949). The price of the instrument is the solution to another kind of problem called boundary value problem for a partial differential equation. The resulting equation cannot be solved analytically. Instead we represent the solution in the form of an expansion in the integer and half-integer powers of the two small parameters mentioned above. We calculate the coefficients of the expansion up to the second order, find their financial sense, perform numerical studies, and validate our results by comparing them to known verified models from the literature. The results of our investigation can be used by both financial institutions and individual investors for optimization of their incomes.

  • 2.
    Canhanga, Betuel
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Malyarenko, Anatoliy
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Murara, Jean-Paul
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Ni, Ying
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Silvestrov, Sergei
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Numerical Studies on Asymptotics of European Option under Multiscale Stochastic Volatility2015In: ASMDA 2015 Proceedings: 16th Applied Stochastic Models and Data Analysis International Conference with 4th Demographics 2015 Workshop / [ed] Christos H Skiadas, ISAST: International Society for the Advancement of Science and Technology , 2015, p. 53-66Conference paper (Refereed)
    Abstract [en]

    Multiscale stochastic volatilities models relax the constant volatility assumption from Black-Scholes option pricing model. Such model can capture the smile and skew of volatilities and therefore describe more accurately the movements of the trading prices. Christoffersen et al. [3] presented a model where the underlying priceis governed by two volatility components, one changing fast and another changing slowly. Chiarella and Ziveyi [2] transformed Christoffersen’s model and computed an approximate formula for pricing American options. They used Duhamel’s principle to derive an integral form solution of the boundary value problem associated to the option price. Using method of characteristics, Fourier and Laplace transforms, they obtained with good accuracy the American options prices. In a previous research of the authors (Canhanga et al. [1]), a particular case of Chiarella and Ziveyi [2] model is used for pricing of European options. The novelty of this earlier work is to present an asymptotic expansion for the option price. The present paper provides experimental and numerical studies on investigating the accuracy of the approximation formulae given by this asymptotic expansion. We present also a procedure for calibrating the parameters produced by our first-order asymptotic approximation formulae. Our approximated option prices will be compared to the approximation obtained by Chiarella and Ziveyi [2].

    1. Canhanga B., Malyarenko, A., Ni, Y. and Silvestrov S. Perturbation methods for pricing European options in a model with two stochastic volatilities. 3rd SMTDA Conference Proceedings. 11-14 June 2014, Lisbon Porturgal, C. H. Skiadas (Ed.) 489-500 (2014).

    2. Chiarella, C, and Ziveyi, J. American option pricing under two stochastic volatility processes. J. Appl. Math. Comput. 224:283–310 (2013).

    3. Christoffersen, P.; Heston, S.; Jacobs, K. The shape and term structure of the index option smirk: why multifactor stochastic volatility models work so well. Manage. Sci. 55 (2) 1914-1932; (2009).

  • 3.
    Canhanga, Betuel
    et al.
    DMI, Eduardo Mondlane University, Maputo, Mozambique.
    Malyarenko, Anatoliy
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Murara, Jean-Paul
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Ni, Ying
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Silvestrov, Sergei
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Numerical Studies on Asymptotics of European Option Under Multiscale Stochastic Volatility2017In: Methodology and Computing in Applied Probability, ISSN 1387-5841, E-ISSN 1573-7713, Vol. 19, no 4, p. 1075-1087Article in journal (Refereed)
    Abstract [en]

    Multiscale stochastic volatilities models relax the constant volatility assumption from Black-Scholes option pricing model. Such models can capture the smile and skew of volatilities and therefore describe more accurately the movements of the trading prices. Christoffersen et al. Manag Sci 55(2):1914–1932 (2009) presented a model where the underlying price is governed by two volatility components, one changing fast and another changing slowly. Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013) transformed Christoffersen’s model and computed an approximate formula for pricing American options. They used Duhamel’s principle to derive an integral form solution of the boundary value problem associated to the option price. Using method of characteristics, Fourier and Laplace transforms, they obtained with good accuracy the American option prices. In a previous research of the authors (Canhanga et al. 2014), a particular case of Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013) model is used for pricing of European options. The novelty of this earlier work is to present an asymptotic expansion for the option price. The present paper provides experimental and numerical studies on investigating the accuracy of the approximation formulae given by this asymptotic expansion. We present also a procedure for calibrating the parameters produced by our first-order asymptotic approximation formulae. Our approximated option prices will be compared to the approximation obtained by Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013).

  • 4.
    Canhanga, Betuel
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Malyarenko, Anatoliy
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Murara, Jean-Paul
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Silvestrov, Sergei
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Pricing European Options Under Stochastic Volatilities Models2016In: Engineering Mathematics I: Electromagnetics, Fluid Mechanics, Material Physics and Financial Engineering / [ed] Sergei Silvestrov; Milica Rancic, Springer, 2016, p. 315-338Chapter in book (Refereed)
    Abstract [en]

    Interested by the volatility behavior, different models have been developed for option pricing. Starting from constant volatility model which did not succeed on capturing the effects of volatility smiles and skews; stochastic volatility models appearas a response to the weakness of the constant volatility models. Constant elasticity of volatility, Heston, Hull and White, Schöbel-Zhu, Schöbel-Zhu-Hull-Whiteand many others are examples of models where the volatility is itself a random process. Along the chapter we deal with this class of models and we present the techniques of pricing European options. Comparing single factor stochastic volatility models to constant factor volatility models it seems evident that the stochastic volatility models represent nicely the movement of the asset price and its relations with changes in the risk. However, these models fail to explain the large independent fluctuations in the volatility levels and slope. Christoffersen et al. in [4] proposed a model with two-factor stochastic volatilities where the correlation between the underlying asset price and the volatilities varies randomly. In the last section of this chapter we introduce a variation of Chiarella and Ziveyi model, which is a subclass of the model presented in [4] and we use the first order asymptotic expansion methods to determine the price of European options.

  • 5.
    Canhanga, Betuel
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. Faculty of Sciences, Department of Mathematics and Computer Sciences, Eduardo Mondlane University, Maputo, Mozambique.
    Malyarenko, Anatoliy
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Ni, Ying
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Rancic, Milica
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Silvestrov, Sergei
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Analytical and Numerical Studies on the Second Order Asymptotic Expansion Method for European Option Pricing under Two-factor Stochastic Volatilities2018In: Communications in Statistics - Theory and Methods, ISSN 0361-0926, E-ISSN 1532-415X, Vol. 47, no 6, p. 1328-1349Article in journal (Refereed)
    Abstract [en]

    The celebrated Black–Scholes model made the assumption of constant volatility but empirical studies on implied volatility and asset dynamics motivated the use of stochastic volatilities. Christoffersen in 2009 showed that multi-factor stochastic volatilities models capture the asset dynamics more realistically. Fouque in 2012 used it to price European options. In 2013 Chiarella and Ziveyi considered Christoffersen's ideas and introduced an asset dynamics where the two volatilities of the Heston type act separately and independently on the asset price, and using Fourier transform for the asset price process and double Laplace transform for the two volatilities processes, solved a pricing problem for American options. This paper considers the Chiarella and Ziveyi model and parameterizes it so that the volatilities revert to the long-run-mean with reversion rates that mimic fast(for example daily) and slow(for example seasonal) random effects. Applying asymptotic expansion method presented by Fouque in 2012, we make an extensive and detailed derivation of the approximation prices for European options. We also present numerical studies on the behavior and accuracy of our first and the second order asymptotic expansion formulas.

  • 6.
    Canhanga, Betuel
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Malyarenko, Anatoliy
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Ni, Ying
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Silvestrov, Sergei
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Perturbation Methods for Pricing European Options in a Model with Two Stochastic Volatilities2015In: New Trends in Stochastic Modelling and Data Analysis / [ed] Raimondo Manca, Sally McClean, Christos H Skiadas, ISAST , 2015, p. 199-210Chapter in book (Refereed)
    Abstract [en]

    Financial models have to reflect the characteristics of markets in which they are developed to be able to predict the future behavior of a financial system. The nature of most trading environments is characterized by uncertainties which are expressed in mathematical models in terms of volatilities. In contrast to the classical Black-Scholes model with constant volatility, our model includes one fast-changing and another slow-changing stochastic volatilities of mean-reversion type. The different changing frequencies of volatilities can be interpreted as the effects of weekends and effects of seasons of the year (summer and winter) on the asset price.

    We perform explicitly the transition from the real-world to the risk-neutral probability measure by introducing market prices of risk and applying Girsanov Theorem. To solve the boundary value problem for the partial differential equation that corresponds to the case of a European option, we perform both regular and singular multiscale expansions in fractional powers of the speed of mean-reversion factors. We then construct an approximate solution given by the two-dimensional Black-Scholes model plus some terms that expand the results obtained by Black and Scholes.

  • 7.
    Canhanga, Betuel
    et al.
    Faculty of Sciences, Department of Mathematics and Computer Sciences, Eduardo Mondlane University, Maputo, Mozambique.
    Malyarenko, Anatoliy
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Ni, Ying
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Silvestrov, Sergei
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Second Order Asymptotic Expansion for Pricing European Options in a Model with Two Stochastic Volatilities2015In: ASMDA 2015 Proceedings: 16th Applied Stochastic Models and Data Analysis International Conference with 4th Demographics 2015 Workshop, 30 June – 4 July 2015 University of Piraeus, Greece / [ed] C. H. Skiadas, ISAST: International Society for the Advancement of Science and Technology , 2015, p. 37-52Conference paper (Refereed)
    Abstract [en]

    Asset price processes with stochastic volatilities have been actively used by researchers in financial mathematics for valuing derivative securities. This type of models allows characterizing the uncertainties in the asset price process in financial markets. In a recent paper Chiarella and Ziveyi analyzed a model with two stochastic volatilities of mean reversion type with one variable changing fast and the other changing slowly. They used method of characteristics to solve the obtained partial differential equation and determine the price of an American option. Fouque et al presented also a similar model in which the volatility of the underlying asset is governed by two diffusion processes which are not of mean reversion type. They developed a first-order asymptotic expansion for the European option price via a perturbation method.

    In this chapter we consider the model given in Chiarella and Ziveyi. Instead of pricing American options we price European options by generalizing the techniques presented in Fouque et al to a more complex model with mean reverting stochastic volatility factors. We analyse both regular and singular perturbations to obtain an asymptotic expansion up to second order which can serve as an approximation for the price of non-path-dependent European options. Similar work is done in authors earlier work Canhanga et al where a first-order asymptotic expansion has been developed. Involving the second order terms has the advantage of capturing more accurately the effects of volatility smile and skew on the option pricing. Analytical approximation formula for pricing European Option is presented.

  • 8.
    Canhanga, Betuel
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Ni, Ying
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Rancic, Milica
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Malyarenko, Anatoliy
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Silvestrov, Sergei
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Numerical Methods on European Options Second Order Asymptotic Expansions for Multiscale Stochastic Volatility2017In: INCPAA 2016 Proceedings: 11th International Conference on Mathematical Problems in Engineering, Aerospace, and Sciences, ICNPAA 2016, La Rochelle, France, 4 - 8 July 2016. / [ed] S. Sivasundaram, 2017, Vol. 1798, p. 020035-1-020035-10, article id 020035Conference paper (Refereed)
    Abstract [en]

    After Black-Scholes proposed a model for pricing European Option in 1973, Cox, Ross and Rubinstein in 1979, and Heston in 1993, showed that the constant volatility assumption in the Black-Scholes model was one of the main reasons for the model to be unable to capture some market details. Instead of constant volatilities, they introduced non-constant volatilities to the asset dynamic modeling. In 2009, Christoffersen empirically showed "why multi-factor stochastic volatility models work so well". Four years later, Chiarella and Ziveyi solved the model proposed by Christoffersen. They considered an underlying asset whose price is governed by two factor stochastic volatilities of mean reversion type. Applying Fourier transforms, Laplace transforms and the method of characteristics they presented an approximate formula for pricing American option.The huge calculation involved in the Chiarella and Ziveyi approach motivated us to investigate another approach to compute European option prices on a Christoffersen type model. Using the first and second order asymptotic expansion method we presented a closed form solution for European option, and provided experimental and numerical studies on investigating the accuracy of the approximation formulae given by the first order asymptotic expansion. In the present chapter we will perform experimental and numerical studies for the second order asymptotic expansion and compare the obtained results with results presented by Chiarella and Ziveyi.

  • 9.
    Ni, Ying
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Canhanga, Betuel
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Malyarenko, Anatoliy
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Silvestrov, Sergei
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Approximation Methods of European Option Pricing in Multiscale Stochastic Volatility Model2017In: INCPAA 2016 Proceedings: 11th International Conference on Mathematical Problems in Engineering, Aerospace, and Sciences, ICNPAA 2016, La Rochelle, France, 4 - 8 July 2016. / [ed] S. Sivasundaram, American Institute of Physics (AIP), 2017, Vol. 1798, p. 020112-1-020112-10, article id 020112Conference paper (Refereed)
    Abstract [en]

    In the classical Black-Scholes model for financial option pricing, the asset price follows a geometric Brownian motion with constant volatility. Empirical findings such as volatility smile/skew, fat-tailed asset return distributions have suggested that the constant volatility assumption might not be realistic. A general stochastic volatility model, e.g. Heston model, GARCH model  and SABR volatility model , in which the variance/volatility itself follows typically a mean-reverting stochastic process, has shown to be superior in terms of capturing the empirical facts. However in order to capture more features of the volatility smile a two-factor, of double Heston type, stochastic volatility model is more useful as shown by Christoffersen, Heston and Jacobs.  We consider one specific type of such two-factor volatility models in which the volatility has multiscale mean-reversion rates. Our model contains two mean-reverting volatility processes with a fast and a slow reverting rate respectively. We consider the European option pricing problem under one type of the multiscale stochastic volatility model where the two volatility processes act as independent factors in the asset price process.  The novelty in this chapter is an approximating analytical solution using asymptotic expansion method which extends the authors earlier research in Canhanga et al. In addition we propose a numerical approximating solution using Monte-Carlo simulation. For completeness and for comparison we also implement the semi-analytical solution by Chiarella and Ziveyi using method of characteristics, Fourier and bivariate Laplace transforms.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf