mdh.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bakhshi Valojerdi, Zeinab
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Balador, Ali
    RISE SICS Västerås, Sweden.
    An Overview on Security and Privacy Challenges and TheirSolutions in Fog-Based Vehicular Application2019In: An Overview on Security and Privacy Challenges and Their Solutions in Fog-Based Vehicular Application, 2019Conference paper (Refereed)
    Abstract [en]

    Fog computing is an emerging computing paradigm that extends cloud services to the edge of the network by moving computation tasks from cloud to network edges to reduce response latency in a wireless network. Fog computing inherits the principle of peer-to-peer networking, decentralization, and geographical distribution from clouds. Hence, fog computing becomes an ideal platform for readily supporting vehicular applications due to its dynamic support for mobility of client-devices and low latent heterogeneous communication capabilities. Despite many advantages, a multitude of security and privacy issues affects the platforms and renders it as a target for unknown adversaries. This has significant implication in the development of safety critical applications, such as vehicular cloud and intelligent transportation system. This paper presents, an overview of existing security and privacy vulnerabilities in fog computing, particularly in vehicular networks. Moreover, state-of-the-art security and privacy solutions for fog based vehicular networks are analyzed. In conclusion, open challenges and future research directions are discussed.

  • 2.
    Bakhshi Valojerdi, Zeinab
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Rodriguez-Navas, Guillermo
    Nokia Bell Labs, Israel.
    A Preliminary Roadmap for Dependability Research in Fog Computing2019Conference paper (Refereed)
    Abstract [en]

    Fog computing aims to support novel real-time applications byextending cloud resources to the network edge. This technologyis highly heterogeneous and comprises a wide variety of devicesinterconnected through the so-called fog layer. Compared to tra-ditional cloud infrastructure, fog presents more varied reliabilitychallenges, due to its constrained resources and mobility of nodes.This paper summarizes current research efforts on fault toleranceand dependability in fog computing and identifies less investigatedopen problems, which constitute interesting research directions tomake fogs more dependable.

  • 3.
    Bakhshi Valojerdi, Zeinab
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Rodriguez-Navas, Guillermo
    Nokia Bell Labs, Israel.
    A preliminary roadmap for dependability research in fog computing2020In: ACM SIGBED Review, ISSN 1551-3688, Vol. 16, no 4, p. 14-19Article in journal (Refereed)
    Abstract [en]

    Fog computing aims to support novel real-time applications by extending cloud resources to the network edge. This technology is highly heterogeneous and comprises a wide variety of devices interconnected through the so-called fog layer. Compared to traditional cloud infrastructure, fog presents more varied reliability challenges, due to its constrained resources and mobility of nodes. This paper summarizes current research efforts on fault tolerance and dependability in fog computing and identifies less investigated open problems, which constitute interesting research directions to make fogs more dependable. 

  • 4.
    Bakhshi Valojerdi, Zeinab
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Rodriguez-Navas, Guillermo
    Nokia Bell Labs, Israel.
    Hansson, Hans
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Dependable Fog Computing: A Systematic Literature Review2019In: Proceedings - 45th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2019, 2019, p. 395-403, article id 8906732Conference paper (Refereed)
    Abstract [en]

    Fog computing has been recently introduced to bridge the gap between cloud resources and the network edge. Fog enables low latency and location awareness, which is considered instrumental for the realization of IoT, but also faces reliability and dependability issues due to node mobility and resource constraints. This paper focuses on the latter, and surveys the state of the art concerning dependability and fog computing, by means of a systematic literature review. Our findings show the growing interest in the topic but the relative immaturity of the technology, without any leading research group. Two problems have attracted special interest: guaranteeing reliable data storage/collection in systems with unreliable and untrusted nodes, and guaranteeing efficient task allocation in the presence of varying computing load. Redundancy-based techniques, both static and dynamic, dominate the architectures of such systems. Reliability, availability and QoS are the most important dependability requirements for fog, whereas aspects such as safety and security, and their important interplay, have not been investigated in depth.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf