mdh.sePublikasjoner
Endre søk
Begrens søket
1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chen, Chang
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, Tianjin, China.
    Li, Hailong
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, 300134, China.
    Li, X.
    Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, China.
    Wang, Y.
    Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, China.
    Zhu, K.
    Tianjin University of Commerce, Key Laboratory China of Refrigeration Technology of Tianjin, China.
    Feasibility of using thermal inertia to shift the peak energy demand of buildings2018Inngår i: International Heat Transfer Conference, Begell House Inc. , 2018, s. 4419-4424Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Peak load introduces stress to the grid as supplied electricity is inadequate during peak demand period. In order to relieve the stress of grid and ensure the electricity supply, peak load shifting is an effective option. Buildings are consuming a huge amount of energy for space heating, ventilation and cooling. Using building thermal inertia to shift peak load has attracted more and more attention. By using thermal inertia, heat supplied during off-peak periods can be stored in the construction materials, and used in peak demand hours. However, peak shaving shall not sacrifice the indoor thermal comfort. The objective of this work is to investigate the impact of demand shifting by using thermal inertia on the indoor temperature. In order to understand how the demand shifting impacts the thermal comfort. A CFD model is developed to simulate an office room in winter time. Three cases that represent different shifting strategies are studied. According the results, when increasing the heating temperature, using thermal inertia of buildings can shift peak load, guarantee indoor thermal comfort and save energy. © 2018 International Heat Transfer Conference. All rights reserved.

  • 2.
    Li, W.
    et al.
    College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China.
    Khalid, H.
    College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China.
    Zhu, Z.
    College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China.
    Zhang, R.
    Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States.
    Liu, G.
    College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China.
    Chen, Chang
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China.
    Thorin, Eva
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin2018Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 226, s. 1219-1228Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lignocellulosic biomass is the most abundant natural resource with high biomethane potential. However, complex structure of lignocellulosic biomass has hampered the efficient utilization of this bioresource. Previous studies have investigated the overall anaerobic digestion performance of lignocellulosic biomass, but the individual participation of each lignocellulosic component during anaerobic digestion remained unclear. Thus, this study investigated the methane production characteristics of cellulose, hemicellulose, lignin and their mixtures along with the microbial communities involved in anaerobic digestion. The results showed that the biomethane potential of cellulose was higher than that of hemicellulose; however, hemicellulose was hydrolysed more quickly than cellulose, while lignin was very difficult to be digested. The higher concentrations of acetic, n-butyric and n-valeric acids hydrolysed from the hemicellulose resulted in a lower pH and more severe inhibition on methane production than that of cellulose, and the methanogenesis gradually recovered after pH adjustment. The co-digestion of cellulose and hemicellulose increased the methane yield and biodegradability compared to mono-digestions. The addition of lignin to cellulose brought more significant decrease in the methane yield of cellulose than that of hemicellulose. Substrate-related bacteria such as Clostridium sensu stricto, Lutaonella, Cloacibacillus and Christensenella showed higher relative abundance in cellulose digestate, and sugar-fermenting bacteria such as Saccharofermentans, Petrimonas and Levilinea were more rich in the digestate of hemicellulose. Moreover, methanogenic Methanospirillum and Methanothrix likely contributed to the methane production of cellulose, while aciduric methanogens from Methanobrevibacter, Methanomassiliicoccus, Methanobacterium and Methanoculleus contributed to that of hemicellulose. This study provides a deeper understanding of the mechanism in the bioconversion of lignocellulosic biomass during anaerobic digestion.

1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf