https://www.mdu.se/

mdu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Li, Xueqiang
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin University of Commerce, Tianjin, China.
    Schwede, Sebastian
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin University of Commerce, Tianjin, China.
    Yu, X.
    University of Shanghai for Science and Technology, Shanghai, China.
    Yu, Z.
    University of Stavanger, Stavanger, Norway.
    Zhu, K.
    Tianjin University, Tianjin, China.
    Toxicity of ionic liquid on anaerobic digestion2017In: Energy Procedia, ISSN 1876-6102, Vol. 142, p. 938-942Article in journal (Refereed)
    Abstract [en]

    Anaerobic digestion is a straightforward process to produce energy from biomass. However, the lignin composed of phenylpropanoid units induces a strong resistance for the hydrolysis step. Ionic liquids (ILs) have been applied in biomass pretreatment to dissolve the biomass components and enhance the anaerobic digestion. However, there are still some challenges such as the toxicity. ILs could inhibit the digestion process and reduce the CH4 production. In this work, a toxicity test for [BMIM]Cl (1-chlorobutane and N-methylimidazole) was conducted. Results show that IL has a strong inhibition and lowered CH4 production when its concentration was higher. At 0.2305±0.0116 g L-1 and 0.4367±0.0219 g L-1, the anaerobic digestion process was inhibited by 10 and 50%, respectively. Accordingly, a higher recovery ratio or a lower pretreatment ratio are necessary to avoid the negative impact of inhibition on BMP. 

  • 2.
    Zhu, K.
    et al.
    Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
    Li, Xueqiang
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Chemical Science & Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 216, p. 348-357Article in journal (Refereed)
    Abstract [en]

    This work evaluates the techno-economic feasibility of integrating the cold energy storage system and the electrical energy storage system in a refrigerated warehouse for shifting the power consumption. A dynamic model has been developed in TRNSYS®. Based on the dynamic simulation, the performance and benefit of those two types of energy storage systems were compared. Results showed that, the integration of a cold energy storage can reduce the electricity consumption and operational cost by 4.3% and 20.5%, respectively. Even though integrating a battery system will increase the electricity consumption by 3.9%, it can reduce the operational cost by 18.7%. The capacity of the energy storage systems, the battery price and the peak electricity price had been identified as key parameters affecting the performance and benefit. To achieve a payback period less than 3 year, for the integration of a cold energy storage system, the peak electricity price should be increased by 25% from the current level, while for the integration of a battery system, the battery price should drop to 0.7 kRMB/kWh.

  • 3.
    Zhu, K.
    et al.
    Key Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin, China.
    Li, Xueqiang
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Key Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Key Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin, China.
    Chen, X.
    Key Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin, China.
    Wang, Y.
    Key Laboratory of Refrigeration Technology of Tianjin, Tianjin University of Commerce, Tianjin, China.
    Experimental and theoretical study of a novel loop heat pipe2018In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 130, p. 354-362Article in journal (Refereed)
    Abstract [en]

    In order to reduce the heat leakage from the evaporator and achieve a longer transport distance, a new type of loop heat pipe (LHP) has been proposed based on a hypothesis that the circulation of working fluids is driven by not only the capillary head, but also the pressure head due to evaporation. In the evaporator, the wick is separated from the heating surface by a chamber, which can effectively use the pressure head generated by evaporation. In this work, a prototype of such a LHP was studied experimentally and theoretically. In order to understand the mechanism of operation, a new mathematical model was established. Comparing the simulated results with the experimental data about the operation temperature, a good agreement was observed that the average absolute deviation and the maximum absolute deviation were in ranges of 0.67–1.21 °C and −1.3 to 6 °C, respectively. With the validated model, the two driving forces were investigated. Results showed that the ratio of the pressure head of evaporation to the capillary head was in a range of 59–54% corresponding to heating powers from 30 W to 110 W. It confirms that the pressure head due to evaporation plays an important role in the circulation of working fluids.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf