mdh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gutiérrez Peón, Pablo
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. TTTech Computertechnik AG, Vienna, Austria.
    Rodríguez, Pedro Manuel
    IK4-IKERLAN, Arrasate-Mondragón, Spain.
    Fernández, Zaloa
    IK4-IKERLAN, Arrasate-Mondragón, Spain.
    Pozo Pérez, Francisco Manuel
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Uhlemann, Elisabeth
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Val, Iñaki
    IK4-IKERLAN, Arrasate-Mondragón, Spain.
    Steiner, Wilfried
    TTTech Computertechnik AG, Austria.
    Cognitive Radio for Improved Reliability in a Real-Time Wireless MAC Protocol based on TDMA2017In: International Conference on Emerging Technologies And Factory Automation ETFA'17, 2017Conference paper (Refereed)
    Abstract [en]

    Wireless communications enables introduction of Internet of Things (IoT) in industrial networks. Unfortunately, real-time guarantees required for many IoT applications, may be compromised in wireless networks due to an unreliable transmission medium. A key component in enabling real-time communications is the medium access control (MAC) layer and its ability to effectively avoid concurrent transmissions that causes deadline misses. Also, deploying the network in a harsh interference environment can lead to low reliability. Time diversity, based on transmitting several copies of the same data at different instants, increases reliability but at the expense of increased jitter and bandwidth. A more efficient resource utilization is expected from cognitive radio, which dynamically takes into account the status of the wireless environment before performing transmissions. This paper proposes a wireless MAC protocol based on scheduled timeslots to avoid concurrent transmissions, combined with two different mechanisms to increase reliability, one based on time diversity and another on cognitive radio. The protocol and its mechanisms to enhance reliability are compared in different interference scenarios, and show that cognitive radios achieves better performance than time diversity, especially when the interference is produced by a jammer.

    Download full text (pdf)
    fulltext
  • 2.
    Gutiérrez Peón, Pablo
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. TTTech Computertechnik AG, Vienna, Austria.
    Uhlemann, Elisabeth
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Steiner, Wilfried
    TTTech Computertechnik AG, Vienna, Austria.
    Björkman, Mats
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Applying Time Diversity for Improved Reliability in a Real-Time Heterogeneous MAC Protocol2017In: 2017 IEEE 85TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2017, article id 8108663Conference paper (Refereed)
    Abstract [en]

    Supporting real-time applications over wireless networks is challenging for several reasons. The medium access control (MAC) layer has a key role in enabling real-time guarantees by providing bounded access time to the transmission medium. Unfortunately, even when timely access is granted, transmissions can still be compromised, specially in the wireless domain, due to the unreliable transmission medium. A common way to increase the reliability of a communication system is to apply redundancy in the form of time diversity, i.e., transmitting several copies of the same message at different points in time. In this paper we propose a wireless MAC protocol capable of handling traffic with different levels of criticality and where transmissions and retransmissions are tailored to deadlines, so that the reliability of the communication system is increased and real-time guarantees can be provided. We focus on the traffic scheduling problem, and extend an already existing solution, Time-Triggered Ethernet, suitable for real-time traffic over wired multi-hop networks. The extension enables transmission of heterogeneous traffic over hybrid wired-wireless networks, and provides timely retransmissions in the wireless segment, such that the real-time guarantees are met. Further, we are able to schedule traffic to better cope with interference patterns of different duration, frequency and level of persistence. The results show that the MAC protocol can be successfully applied to combat different kinds of interference while meeting real-time deadlines.

    Download full text (pdf)
    fulltext
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf