Increase of the radiation power in different frequency bands during the last decades, has called for a study of harmful effects on the living organisms and electronic equipment of the radio frequency energy. An accurate determination of the near field strength, electric as well as magnetic, in the vicinity of higher-power transmitting antennas is necessary for assessing any possible radiation hazard. In that sense, it is of great importance to account for the influence of the finite ground conductivity on the electromagnetic field structure in the surroundings of these emitters. The estimation of this influence has been intensively studied, and a number of approaches has been applied in that sense, ranging from the exact full-wave based ones to different forms of approximate, less time-consuming, ones. Although the approximate methods introduce a certain level of calculation error, their simplicity is of interest in the electomagnetic compatibility (EMC) studies. For that reason, finding an approximate, but satisfyingly accurate method, applicable to wide range of parameters is often a goal of researches done in this field.
In this paper, the authors perform an analysis of a thin horizontal dipole antenna (HDA) above real ground of known electrical parameters. The approach is based on the electric-field integral equation method, and formulation of the Hallén’s integral equation (HIE). This equation is then solved for the current, which is assumed in a polynomial form, using the point-matching method (PMM). This way obtained system of linear equations involves improper Sommerfeld’s integrals, which express the influence of the real ground and are here solved approximately using simple, so-called OIA and TIA, approximations (one- and two-image approximations). Both types of approximations are in an exponential form, and therefore are similar to those obtained applying the method of images. It should be kept in mind that the goal of this approach is to develop approximations that have a simple form, whose application yields satisfyingly accurate calculations of the Sommerfeld`s type of integrals, and are widely applicable, i.e. their employment is not restricted by the values of electrical parameters of the ground, or the geometry.
Thorough analysis is performed in order to observe the influence of different parameters of the geometry, and the ground, on current distribution and the input impedance/admittance of the HDA in a wide frequency range. Furthermore, the verification of the method is done by comparison to the exact model based on the full-wave theory, and experimental data. Obtained results indicate a possibility of applying the described methodology to inverse problem involving evaluation of electrical parameters of the ground (or detection of ground type change) based on measured input impedance/admittance of the antenna.