mdh.sePublications
Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cuenca Mira, José Antonio
    et al.
    Universidad de Málaga.
    Darpö, Erik
    Uppsala Universitet.
    Dieterich, Ernst
    Uppsala Universitet.
    Classification of the finite dimensional absolute valued algebras having a non-zero central idempotent or a one-sided unity2010In: Bulletin des Sciences Mathématiques, ISSN 0007-4497, E-ISSN 1952-4773, Vol. 134, no 3, p. 247-277Article in journal (Refereed)
    Abstract [en]

    An absolute valued algebra is a non-zero real algebra that is equipped with a multiplicative norm. We classify all finite dimensional absolute valued algebras having a non-zero central idempotent or a one-sided unity, up to algebra isomorphism. This completes earlier results of Ramirez Alvarez and Rochdi which, in our self-contained presentation, are recovered from the wider context of composition k-algebras with an LR-bijective idempotent. 

  • 2.
    Darpö, Erik
    Uppsala universitet.
    Classification of pairs of rotations in finite-dimensional Euclidean space2009In: Algebras and Representation Theory, ISSN 1386-923X, E-ISSN 1572-9079, Vol. 12, p. 333-342Article in journal (Refereed)
  • 3.
    Darpö, Erik
    Uppsala universitet.
    Normal forms for the G2-action on the real symmetric 7 × 7-matrices by conjugation2007In: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 312, p. 668-688Article in journal (Refereed)
    Abstract [en]

    The exceptional Lie group G2 ⊂ O7 (R) acts on the set of real symmetric 7 × 7-matrices by conjugation. We solve the normal form problem for this group action. In view of the earlier results [G.M. Benkart, D.J. Britten, J.M. Osborn, Real flexible division algebras, Canad. J. Math. 34 (1982) 550-588; J.A. Cuenca Mira, R. De Los Santos Villodres, A. Kaidi, A. Rochdi, Real quadratic flexible division algebras, Linear Algebra Appl. 290 (1999) 1-22; E. Darpö, On the classification of the real flexible division algebras, Colloq. Math. 105 (1) (2006) 1-17], this gives rise to a classification of all finite-dimensional real flexible division algebras. By a classification is meant a list of pairwise non-isomorphic algebras, exhausting all isomorphism classes. We also give a parametrisation of the set of all real symmetric matrices, based on eigenvalues.

  • 4.
    Darpö, Erik
    Uppsala Universitet.
    On the classification of the real flexible division algebras2006In: Colloquium Mathematicum, ISSN 0010-1354, E-ISSN 1730-6302, Vol. 105, p. 1-17Article in journal (Refereed)
    Abstract [en]

    The exceptional Lie group G2 ⊂ O7 (R) acts on the set of real symmetric 7 × 7-matrices by conjugation. We solve the normal form problem for this group action. In view of the earlier results [G.M. Benkart, D.J. Britten, J.M. Osborn, Real flexible division algebras, Canad. J. Math. 34 (1982) 550-588; J.A. Cuenca Mira, R. De Los Santos Villodres, A. Kaidi, A. Rochdi, Real quadratic flexible division algebras, Linear Algebra Appl. 290 (1999) 1-22; E. Darpö, On the classification of the real flexible division algebras, Colloq. Math. 105 (1) (2006) 1-17], this gives rise to a classification of all finite-dimensional real flexible division algebras. By aclassification is meant a list of pairwise non-isomorphic algebras, exhausting all isomorphism classes. We also give a parametrisation of the set of all realsymmetric matrices, based on eigenvalues. 

  • 5.
    Darpö, Erik
    Mälardalen University, School of Education, Culture and Communication.
    Reella vektorprodukter2007In: Normat, ISSN 0801-3500, Vol. 55, p. 157-165Article in journal (Other (popular science, discussion, etc.))
  • 6.
    Darpö, Erik
    Mälardalen University, School of Education, Culture and Communication. Uppsala University.
    Some modern developments in the theory of real division algebras2008Report (Other academic)
  • 7.
    Darpö, Erik
    Mathematical Institute, St Giles, Oxford.
    Some modern developments in the theory of real division algebras2010In: Proceedings of the Estonian Academy of Sciences, ISSN 1736-6046, E-ISSN 1736-7530, Vol. 59, no 1, p. 53-59Article in journal (Refereed)
    Abstract [en]

    The study of real division algebras was initiated by the construction of the quaternion and the octonion algebras in the mid-19th century. In spite of its long history, the problem, of classifying all finite-dimensional real division algebras is still unsolved. We review the theory of this problem, with focus on recent contributions.

  • 8.
    Darpö, Erik
    Uppsala universitet.
    Vector product algebras2009In: Bulletin of the London Mathematical Society, ISSN 0024-6093, E-ISSN 1469-2120, Vol. 41, p. 898-902Article in journal (Refereed)
    Abstract [en]

    Vector products can be defined on spaces of dimensions 0, 1, 3 and 7 only, and their isomorphism types are determined entirely by their adherent symmetric bilinear forms. We present a short and elementary proof for this classical result.

  • 9.
    Darpö, Erik
    et al.
    Uppsala Universitet.
    Dieterich, Ernst
    Uppsala Universitet.
    Real commutative division algebras2007In: Algebras and Representation Theory, ISSN 1386-923X, E-ISSN 1572-9079, Vol. 10, no 2, p. 179-196Article in journal (Refereed)
    Abstract [en]

    The category of all two-dimensional real commutative division algebras is shown to split into two full subcategories. One of them is equivalent to the category of the natural action of the cyclic group of order 2 on the open right half plane ℝ>0 × ℝ. The other one is equivalent to the category of the natural action of the dihedral group of order 6 on the set of all ellipses in ℝ2 which are centered at the origin and have reciprocal axis lengths. Cross-sections for the orbit sets of these group actions are easily described. Together with ℝ they classify all real commutative division algebras up to isomorphism. Moreover we describe all morphisms between the objects in this classifying set, thus obtaining a complete picture of the category of all real commutative division algebras, up to equivalence. This supplements earlier contributions of Kantor and Solodovnikov, Hypercomplex Numbers: An Elementary Introduction to Algebras, Nauka, Moscow, 1973; Benkart et al., Hadronic J., 4: 497-529, 1981; and Althoen and Kugler, Amer. Math. Monthly, 90: 625-635, 1983, who achieved partial results on the classification of the realcommutative division algebras.

  • 10.
    Darpö, Erik
    et al.
    Mathematical Institute, St Giles', Oxford,.
    Dieterich, Ernst
    Uppsala universitet.
    The double sign of a real division algebra of finite dimension greater than one2012In: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 285, no 13, p. 1635-1642Article in journal (Refereed)
    Abstract [en]

    For any real division algebra A of finite dimension greater than one, the signs of the determinants of left multiplication and right multiplication by an element a∈ A{set minus}{0} are shown to form an invariant of A, called its double sign. For each n ∈ {2, 4, 8}, the double sign causes the category of all n-dimensional realdivision algebras to decompose into four blocks. The structures of these blocks are closely related, and their relationship is made precise for a sample of full subcategories of.

  • 11.
    Darpö, Erik
    et al.
    Mälardalen University, School of Education, Culture and Communication.
    Dieterich, Ernst
    Herschend, Martin
    In which dimensions does a division algebra over a given ground field exist?2005In: L'Enseignement mathématique, ISSN 0013-8584, E-ISSN 2309-4672, Vol. 51, p. 255-263Article in journal (Refereed)
  • 12.
    Darpö, Erik
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Gill, Christopher C.
    Mathematical Institute, St Giles, Oxford, United Kingdom.
    Decomposing tensor products for cyclic and dihedral groups2013In: Proceedings of the 45th Symposium on Ring Theory and Representation Theory, 2013, p. 24-28Conference paper (Refereed)
    Abstract [en]

    We give a new formula for the decomposition of a tensor product of indecomposable modules of cyclic two-groups. This formula is also shown to describe thedecomposition of tensor products of an important class of modules of dihedral two-groups

  • 13.
    Darpö, Erik
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. Nagoya University, Japan.
    Gill, Christopher C
    Charles University, Praha, Czech Republic.
    The Loewy length of a tensor product of modules of a dihedral two-group2014In: Journal of Pure and Applied Algebra, ISSN 0022-4049, E-ISSN 1873-1376, Vol. 218, no 4, p. 760-776Article in journal (Refereed)
    Abstract [en]

    While the finite-dimensional modules of the dihedral 2-groups over fields of characteristic 2 were classified over 30 years ago, very little is known about the tensorproducts of such modules. In this article, we compute the Loewy length of the tensor product of two modules of a dihedral 2-group in characteristic 2. As an immediate consequence, we determine when such a tensor product has a projective direct summand.

  • 14.
    Darpö, Erik
    et al.
    Nagoya University.
    Gill, Christopher C.
    Charles University, Praha.
    The Loewy length of tensor products for dihedral two-groups2012In: Proceedings of the 44th Symposium on Ring Theory and Representation Theory, 2012, p. 23-29Conference paper (Refereed)
  • 15.
    Darpö, Erik
    et al.
    Uppsala universitet.
    Herschend, Martin
    Nagoya University.
    On the representation ring of the polynomial algebra over a perfect field2010In: Mathematische Zeitschrift, ISSN 0025-5874, E-ISSN 1432-1823, Vol. 265, no 3, p. 601-615Article in journal (Refereed)
    Abstract [en]

    We consider the tensor product of modules over the polynomial algebra corresponding to the usual tensor product of linear operators. We present a general description of the representation ring in case the ground field k is perfect. It is made explicit in the special cases when k is real closed respectively algebraically closed. Furthermore, we discuss the generalisation of this problem to representations of quivers. In particular the representation ring of quivers of extended Dynkin type à is provided.

  • 16.
    Darpö, Erik
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. Mathematical Institute, St Giles', Oxford, United Kingdom.
    Pérez Izquierdo, José María
    Universidad de la Rioja, Spain.
    Autotopies and quasigroup identities: new aspects of non-associative division algebras2015In: Forum mathematicum, ISSN 0933-7741, E-ISSN 1435-5337, Vol. 27, no 5, p. 2691-2745Article in journal (Refereed)
    Abstract [en]

    In this article, we explore new aspects in the classification of non-associative division algebras. By a detailed study of the representations of the Lie group of autotopies of real division algebras we show that, if the group of autotopies has a sufficiently rich structure, then the algebra is isotopic to one of the classical real division algebras. This turns out to be the case for large classes of real division algebras, including many that are defined by identities. In several cases, a classification up to isomorphism can be worked out from this information.

  • 17.
    Darpö, Erik
    et al.
    University of Oxford.
    Rochdi, Abdellatif
    Université Hassan II Mohammedia, Morocco.
    Classification of the four-dimensional power-commutative real division algebras2011In: Proceedings of the Royal Society of Edinburgh. Section A Mathematics, ISSN 0308-2105, E-ISSN 1473-7124, Vol. 141, no 6, p. 1207-1223Article in journal (Refereed)
    Abstract [en]

    A classification of all four-dimensional power-commutative real division algebras is given. It is shown that every four-dimensional power-commutative realdivision algebra is an isotope of a particular kind of a quadratic division algebra. The description of such isotopes in dimensions four and eight is reduced to the description of quadratic division algebras. In dimension four, this leads to a complete and irredundant classification. As a special case, the finite-dimensionalpower-commutative real division algebras that have a unique non-zero idempotent are characterized.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf