mdh.sePublications
Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Cheng, Fu
    Ericson, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Andersson, Sandra
    Landelius, Tomas
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Modelling the diffuse component of solar radiation using artificial intelligence techniques2018Conference paper (Refereed)
  • 2.
    Dahlquist, Erik
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Nordlader, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Christian
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. ABB Process Industries AB, Västerås, Sweden.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Control of waste water treatment combined with irrigation2019Conference paper (Refereed)
    Abstract [en]

    In waste water treatment using biological treatment processes normally phosphorous, nitrous compounds as well as organic matterare removed.It is also important to remove or kill pathogens that otherwisecould cause diseases. The surplus of bio-sludge is used to produce biogas. In thepaper four different alternatives for system design and operations of systems was discussed. The alternatives integrates thewaste water treatment and irrigation offarmland using the water taken out from different positions in the waste water treatment plant.

  • 3.
    Ericson, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Lindmark, Johan
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology. KTH.
    A simplified model for anaerobic digestion of solid waste using real data from a full-scale biogas plant2010Conference paper (Refereed)
  • 4.
    Ericson, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology. KTH.
    Exploring the possibility of using a simple neural network for the prediction of biogas production of a solid waste digester2010Conference paper (Refereed)
  • 5.
    Li, Hailong
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Lindmark, Johan
    Mälardalen University, School of Sustainable Development of Society and Technology. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Nordlander, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhao, Li
    Tianjin University, China.
    Using the solid digestate from a wet anaerobic digestion process as an energy resource2013In: Energy technology, ISSN 2194-4296, Vol. 1, no 1, p. 94-101Article in journal (Refereed)
    Abstract [en]

    The wet anaerobic digestion process is a widely used method to produce biogas from biomass. To avoid the risks involved with using the digestion waste as a fertilizer, this work investigates the possibilities to use the solid digestate as an energy resource to produce heat and electricity, which could save some energy currently consumed by the plant and, therefore, may increase the overall efficiency of a biogas plant. Simulations were conducted based on real data from the Växtkraft biogas plant in Västerås, Sweden as a case study. Results show that it is necessary to dry the solid digestate before combustion and include flue-gas condensation to recover enough heat for the drying process. When a steam turbine cycle is integrated, the generated electricity could cover 13–18 % of the total electricity consumption of the plant, depending on the degree of dryness. In addition, reducing the digestion period can increase the carbon content (ultimate analysis), the heating value, and the mass flow of the solid digestate. As a result, the production of electricity and heat is augmented in the steam turbine cycle. However, the production of biogas is reduced. Therefore, a comprehensive economic evaluation is suggested to optimize a biogas plant that uses the solid digestate from a wet anaerobic digestion process as an energy resource.

  • 6.
    Nordlander, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Eva, Thorin
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, JinYue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH-Royal Institute of Technology, Stockholm, Sweden.
    Investigating the possibility of applying an ADM1 based model to a full-scale co-digestion plant2017In: Biochemical engineering journal, ISSN 1369-703X, E-ISSN 1873-295X, Vol. 120, p. 73-83Article in journal (Refereed)
    Abstract [en]

    This study investigated the possibility of using a model based on the anaerobic digestion model no. 1 (ADM1) on a full-scale 4000 m3 digester in order to understand how such theoretical models can be applied to a real industrial process. The industrial scale digester co-digests the organic fraction of municipal solid waste, grease trap sludge, and ley crop silage with varying feed rates and amounts of volatile solids. A year of process data was collected. Biogas flow, methane content/flow, and ammonia nitrogen were the variables that the model was best at predicting (index of agreement at 0.78, 0.61/0.77, and 0.68, respectively). The model was also used to investigate the effect of increasing the volatile solids (VS) concentration entering the digester. According to simulation results, increasing the influent VS concentration will increase biogas and methane outflow (from 1.5 million Nm3 methane to more than 2 million Nm3 methane), but decrease the amounts of biogas/methane per unit of volatile solids (from about 264 Nm3methane per tonne VS to below 215 Nm3 methane per tonne VS).

  • 7.
    Nordlander, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Holgersson, Jenny
    Eskilstuna Energi och Miljö.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thomassen, Martin
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Energy Efficiency Evaluation of two Biogas Plants2011Conference paper (Refereed)
    Abstract [en]

    Anaerobic digestion for biogas production is a promising renewable energy technology whichcan be used to achieve environmental goals set in the European Union and other regions. Thereare however many improvements that can still be made to the process. Furthermore, there arealternative energy conversion processes that compete for some of the substrates used inanaerobic digestion. Energy efficiency could therefore be a tool for measuring and comparingthe performance of biogas plants. This study suggests a method for calculating energyefficiency of the biogas plant so that it is comparable to other processes. Two examples ofexisting biogas plants in Sweden have been selected for the efficiency assessment by using themethod proposed in this paper. The results are compared between the plants to assess thefurther potential of improvement.

  • 8.
    Nordlander, Eva
    et al.
    Mälardalen University, School of Business, Society and Engineering.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering.
    Yan, Jinyue
    KTH.
    Modeling of a full-scale biogas plant using a dynamic neural network2013Conference paper (Refereed)
  • 9.
    Song, Han
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Nordlander, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Modeling and optimization of a regional waste-to-energy system: A case study in central Sweden2013In: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 33, no 5, p. 1315-1316Article in journal (Other academic)
  • 10.
    Thorin, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Lindmark, Johan
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Nordlander, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Song, Han
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Jääskeläinen, Ari
    The Municipal Federation of Savonia University of Applied Sciences.
    Malo, Laura
    Centre for Economic Development, Transport and the Environment for North Savo (CNS).
    den Boer, Emilia
    Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
    den Boer, Jan
    WAMECO S.C., ul. Malinowa 7, 55-002 Kamieniec Wrocławski, Poland.
    Szpadt, Ryszard
    Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
    Belous, Olga
    Klaipeda University (KLU).
    Kaus, Taivo
    Estonian Regional and Local Development Agency (ERKAS).
    Käger, Marja
    Estonian Regional and Local Development Agency (ERKAS).
    State of the art In the Waste to Energy Area: Technology and Systems2011Report (Other academic)
  • 11.
    Thorin, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Lindmark, Johan
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Nordlander, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Odlare, Monica
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dahlquist, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Kastensson, Jan
    Mercatus Engineering AB.
    Leksell, Niklas
    Svensk Växtkraft AB.
    Pettersson, Carl-Magnus
    Svensk Växtkraft AB.
    Performance Optimization of the Växtkraft Biogas Production Plant2011In: ICAE2011 - International Conference on Applied Energy, 2011, p. 1833-1844Conference paper (Refereed)
    Abstract [en]

    All over the world there is a strong interest and also potential for biogas production fromorganic residues as well as from different crops. However, to be commercially competitive withother types of fuels, efficiency improvements of the biogas production process are needed. In this paper the results of the project BioGasOpt, Performance optimization of the Växtkraft biogas production plant and surrounding system, are summarized. The project is performed in cooperation between Mälardalen University, the biogas plant Svensk Växtkraft AB, the membrane filtration company Mercatus Engineering AB and the farm Nibble Lantbruk AB.

    In the Växtkraft biogas plant organic wastes from households and restaurants are mixed and digested with crops from graze land. Four areas of importance for the performance of the plant are addressed in the BioGasOpt project: treatment of the feed material to enhance the fermentation rate, transport performance of gas and nutrients in the reactor, limitation of the ballast of organics in the water stream recirculated in the process, and use of the biogas plant residues at farms.

    The results indicate a potential to increase the biogas yield from the process with up to 40 % with pre-treatment of the feed and including membrane filtration in the process. The possibilities to improve the mixing in the digester also show a significant potential for even higher biogas yields. Modelling of the biogas process for better process control is also identified as a possible way to further improve the biogas yield. However, model development taking into account what input data is possible to get at a biogas plant in operation is needed.

    Further, the results from the project show that the residues from biogas production can be used as fertilizers but that the emission of N2O from the fertilised soil is dependent on the soil type and spreading technology.

  • 12.
    Thorin, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Lindmark, Johan
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Nordlander, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Odlare, Monica
    Mälardalen University, School of Business, Society and Engineering.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering.
    Kastensson, Jan
    Mercatus Engineering AB.
    Leksell, Niklas
    Svensk Växtkraft AB.
    Pettersson, Carl-Magnus
    Svensk Växtkraft AB.
    Performance optimization of the Växtkraft biogas production plant2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 97, p. 503-508Article in journal (Refereed)
    Abstract [en]

    All over the world there is a strong interest and also potential for biogas production from organic residues as well as from different crops. However, to be commercially competitive with other types of fuels, efficiency improvements of the biogas production process are needed. In this paper, results of improvements studies done on a full scale co-digestion plant are presented

     

    In the plant organic wastes from households and restaurants are mixed and digested with crops from graze land. The areas for improvements of the plant addressed are treatment of the feed material to enhance the digestion rate, limitation of the ballast of organics in the water stream recirculated in the process, and use of the biogas plant residues at farms. Results from previous studies on pre-treatment and membrane filtration of recirculated process water are combined for estimation of the total improvement potential. Further, the possibility to use neural networks to predict biogas production using historical data from the full-scale biogas plant was investigated. Results from investigation of using the process residues as fertilizer are also presented.

     

    The results indicates a potential to increase the biogas yield from the process with up to over  30 % with pre-treatment of the feed and including membrane filtration in the process. Neural networks have the potential to be used for prediction of biogas production. Further, it is shown that the residues from biogas production can be used as fertilizers but that the emission of N2O from the fertilised soil is dependent on the soil type and spreading technology.

  • 13.
    Thorin, Eva
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Nordlander, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Lindmark, Johan
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dahlquist, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Bel Fdhila, Rebei
    Mälardalen University, School of Sustainable Development of Society and Technology.
    MODELING OF THE BIOGAS PRODUCTION PROCESS- A REVIEW2012Conference paper (Refereed)
    Abstract [en]

    Production of biogas by digestion of organic wastes and other feedstock is one of the important technical solutions that contribute to the transform of the energy system from being fossil fuel dependent to renewable energy originated. To be fully commercial and competitive, the production of biogas needs to be further developed and optimized based on the technical, economic and environmental aspects. Thus, comprehensive understanding of fluid dynamics and microbial reactions in the digestion process is necessary to accurately and robustly model, predict and control the biogas production.

    In this paper possible pathways for modeling the biogas reactor is discussed based on previous work on anaerobic digestion modeling and modeling of the fluid flow in reactors. Important parameters for modeling biogas production, with a focus on processes using waste as feedstock, are considered. Identification of knowledge gaps for the modeling of the biogas process is performed and how to overcome the obstacles is addressed.

  • 14.
    Thorin, Eva
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Nordlander, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Lindmark, Johan
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Schwede, Sebastian
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Jansson, Joakim
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Hakalehto, Elias
    Finnoflag.
    Heitto, Anneli
    Finnoflag.
    Jääskeläinen, Ari
    Savonia University of Applied Sciences.
    Suhonen,, Anssi
    Savonia University of Applied Sciences.
    Den Boer, Emilia
    Wrocław University of Technology.
    Possibilites for Optimization of Biorefinery process2014Report (Other academic)
  • 15.
    Wang, Xiaoqiang
    et al.
    National Engineering Laboratory for Biomass Power Generation Equipment (NELB), School of Renewable Energy, North China Electric Power University.
    Nordlander, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Microalgal Biomethane Production Integrated with an Existing Biogas Plant: A Case Study in Sweden2012Conference paper (Refereed)
    Abstract [en]

    Microalgae are considered as potential sources for biodiesel production due to the higher growth rate than terrestrial plants. However, the large-scale application of algal biodiesel would be limited by the downstream cost of lipid extraction and the availability of water, CO2 and nutrients. A possible solution is to integrate algae cultivation with existing biogas plant, where algae can be cultivated using the discharges of CO2 and digestate as nutrient input, and then the attained biomass can be converted directly to biomethane by existing infrastructures. This integrated system is investigated and evaluated in this study. Algae are cultivated in a photobioreactor in a greenhouse, and two cultivation options (greenhouse with and without heating) are included. Life cycle assessment of the system was conducted, showing that algal biomethane production without greenhouse heating would have a net energy ratio of 1.54, which is slightly lower than that (1.78) of biomethane from ley crop. However, land requirement of the latter is approximately 68 times that of the former, because the area productivity of algae could reach at about 400 t/ha (dry basis) in half a year, while the annual productivity of ley crop is only about 5.8 t/ha. For the case of Växtkraft biogas plant in Västerås, Sweden, the integrated system has the potential to increase the annual biomethane output by 9.4 %. This new process is very simple, which might have potential for scale-up and commercial application of algal bioenergy.

  • 16.
    Wang, Xiaoqiang
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. North China Electric Power University, Beijing.
    Nordlander, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology.
    Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden2013In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 112, p. 478-484Article in journal (Refereed)
    Abstract [en]

    Microalgae are considered as potential sources for biodiesel production due to the higher growth rate than terrestrial plants. However, the large-scale application of algal biodiesel would be limited by the downstream cost of lipid extraction and the availability of water, CO2 and nutrients. A possible solution is to integrate algae cultivation with existing biogas plant, where algae can be cultivated using the discharges of CO2 and digestate as nutrient input, and then the attained biomass can be converted directly to biomethane by existing infrastructures. This integrated system is investigated and evaluated in this study. Algae are cultivated in a photobioreactor in a greenhouse, and two cultivation options (greenhouse with and without heating) are included. Life cycle assessment of the system was conducted, showing that algal biomethane production without greenhouse heating would have a net energy ratio of 1.54, which is slightly lower than that (1.78) of biomethane from ley crop. However, land requirement of the latter is approximately 68 times that of the former, because the area productivity of algae could reach at about 400 t/ha (dry basis) in half a year, while the annual productivity of ley crop is only about 5.8 t/ha. For the case of Växtkraft biogas plant in Västerås, Sweden, the integrated system has the potential to increase the annual biomethane output by 9.4%. This new process is very simple, which might have potential for scale-up and commercial application of algal bioenergy. © 2013 Elsevier Ltd. All rights reserved.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf