mdh.sePublications
Change search
Refine search result
12 1 - 50 of 85
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abas, N.
    et al.
    University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan.
    Kalair, A. R.
    COMSATS University Islamabad, Islamabad, Pakistan.
    Seyedmahmoudian, M.
    Swinburne University, Australia.
    Naqvi, M.
    Karlstad University.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Khan, N.
    COMSATS University Islamabad, Islamabad, Pakistan.
    Dynamic simulation of solar water heating system using supercritical CO2 as mediating fluid under sub-zero temperature conditions2019In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 161, article id 114152Article in journal (Refereed)
    Abstract [en]

    CO2 is becoming increasingly important as a mediating fluid, and simulation studies are indispensable for corresponding developments. In this study, a simulation-based performance investigation of a solar water heating system using CO2 as a mediating fluid under sub-zero temperature condition is performed using the TRNSYS® software. The maximum performance is achieved at a solar savings fraction of 0.83 during July. The as lowest solar savingss fraction of 0.41 is obtained during December. The annual heat production of the proposed system under Fargo climate is estimated to be about 2545 kWh. An evacuated glass tube solar collector is designed, fabricated and tested for various climate conditions. Moreover, a detailed comparison of the system's performance at sub/supercritical and supercritical pressures shows that the annual heat transfer efficiency of the modeled system is 10% higher at supercritical pressure than at sub/supercritical pressures. This result can be attributd to the strong convection flow of CO2 caused by density inhomogeneities, especially in the near critical region. This condition resuls in high heat transfer rates.

  • 2.
    Benavente, F.
    et al.
    Department of Chemical Engineering, Applied Electrochemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
    Lundblad, A.
    Division of Safety and Transport/Electronics, RISE, Research Institutes of Sweden, Borås, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Department of Chemical Engineering, Applied Electrochemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
    Zhang, Y.
    Department of Chemical Engineering, Applied Electrochemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
    Cabrera, S.
    Instituto de Investigaciones Químicas, Carrera de Ciencias Químicas, UMSA Universidad Mayor de San Andrés, Bolivia.
    Lindbergh, G.
    Department of Chemical Engineering, Applied Electrochemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
    Photovoltaic/battery system sizing for rural electrification in Bolivia: Considering the suppressed demand effect2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 235, p. 519-528Article in journal (Refereed)
    Abstract [en]

    Rural electrification programs usually do not consider the impact that the increment of demand has on the reliability of off-grid photovoltaic (PV)/battery systems. Based on meteorological data and electricity consumption profiles from the highlands of Bolivian Altiplano, this paper presents a modelling and simulation framework for analysing the performance and reliability of such systems. Reliability, as loss of power supply probability (LPSP), and cost were calculated using simulated PV power output and battery state of charge profiles. The effect of increasing the suppressed demand (SD) by 20% and 50% was studied to determine how reliable and resilient the system designs are. Simulations were performed for three rural application scenarios: a household, a school, and a health centre. Results for the household and school scenarios indicate that, to overcome the SD effect, it is more cost-effective to increase the PV power rather than to increase the battery capacity. However, with an increased PV-size, the battery ageing rate would be higher since the cycles are performed at high state of charge (SOC). For the health centre application, on the other hand, an increase in battery capacity prevents the risk of electricity blackouts while increasing the energy reliability of the system. These results provide important insights for the application design of off-grid PV-battery systems in rural electrification projects, enabling a more efficient and reliable source of electricity.

  • 3.
    Benavente-Araoz, F.
    et al.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Lundblad, A.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, Y.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Cabrera, S.
    UMSA Universidad Mayor de San Andrés, Bolivia.
    Lindbergh, G.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Loss-of-load probability analysis for optimization of small off-grid PV-battery systems in Bolivia2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 3715-3720Article in journal (Refereed)
    Abstract [en]

    This study evaluates the use of energy storage technologies coupled to renewable energy sources in rural electrification as a way to address the energy access challenge. Characteristic energy demanding applications will differently affect the operating conditions for off-grid renewable energy systems. This paper discusses and evaluates simulated photovoltaic power output and battery state of charge profiles, using estimated climate data and electricity load profiles for the Altiplanic highland location of Patacamaya in Bolivia to determine the loss of load probability as optimization parameter. Simulations are performed for three rural applications: household, school, and health center. Increase in battery size prevents risk of electricity blackouts while increasing the energy reliability of the system. Moreover, increase of PV module size leads to energy excess conditions for the system reducing its efficiency. The results obtained here are important for the application of off-grid PV-battery systems design in rural electrification projects, as an efficient and reliable source of electricity.

  • 4.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    PV water pumping systems for agricultural applications2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Grassland and farmland degradation is considered as one of the worst environmental and economic threats for China. The degradation process negatively affects food and water security, economy, society and climate changes.

    Photovoltaic water pumping (PVWP) technology for irrigation is an innovative and sustainable solution to curb the grassland degradation. At the same time it can promote the conservation of farmland, especially in remote areas of China. The combination of PVWP technology with water saving irrigation techniques and sustainable management of the groundwater resources can lead to several benefits. These include enhancing grassland productivity, halting wind and rainfall erosion, providing higher incomes and better living conditions for farmers.   

    This doctoral thesis aims to bridge the current knowledge gaps, optimize system implementation and prevent system failures. This work represents thus a step forward to solve the current and future nexus between energy, water and food security in China, using PVWP technology for irrigation.

    Models for the dynamic simulations of PVWP systems, irrigation water requirements (IWR) and crop response to water have been presented and integrated. Field measurements at a pilot PVWP system in Inner Mongolia have been conducted to analyse the reliability of the models adopted. A revision of the traditional design approaches and a new optimization procedure based on a genetic algorithm (GA) have been proposed to guarantee the match between IWR and water supply, to minimize the system failures and to maximize crop productivity and thus the PVWP system profitability and effectiveness.

    Several economic analyses have been conducted to establish the most cost effective solution for irrigation and to evaluate the project profitability. The possible benefits generated by the PVWP system implementation have been highlighted, as well as the effects of the most sensitive parameters, such as forage price and incentives. The results show that PVWP system represents the best technical and economic solution to provide water for irrigation in the remote areas compared to other traditional water pumping technologies. The environmental benefits have been also addressed, evaluating the CO2 emissions saving achievable from the PVWP system operation. The assessment of the feasible and optimal areas for implementing PVWP systems in China has been conducted using spatial analysis and an optimization tool for the entire supply chain of forage production. The results show that the potentials of PVWP systems in China are large. Nevertheless, the feasible and optimal locations are extremely sensitive to several environmental and economic para­meters such as forage IWR, groundwater depth, and CO2 credits that need to be carefully taken into account in the planning process.   

    Although this doctoral thesis has used China as case study, PVWP technology can be applied for irrigation purposes all over the world both for off- and on-grid applications leading to several economic and environmental benefits.

  • 5.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering.
    PV water pumping systems for grassland and farmland conservation2013Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Grassland degradation is considered as one of the worst environmental and economic problems in China because of the negative impacts on water and food security. The application of the photovoltaic water pumping (PVWP) technology for irrigation is an innovative and sustainable solution to curb the progress of grassland desertification and to promote the conservation of farmland in remote areas. The combination of PVWP with water saving irrigation techniques and the sustainable management of the water resources enhances the grass productivity enabling to halt wind and rainfall erosion and to provide higher incomes and better living conditions for farmers. PVWP systems have been used for more than 40 years especially for drinking purposes, livestock watering and irrigation in small-medium size applications. Nevertheless, several knowledge gaps still exist and system failures still occur, which are mainly bounded to the system design procedure and optimization. The technical and economic feasibilities related to the system implementation, especially effectiveness and profitability, need to be addressed. Moreover, irrigation in remote areas constrained by availability of water resources has to be investigated for a better understanding of PVWP system integration with the environment and for optimization purposes. This thesis is to bridge the current knowledge gaps, optimize system implementation and prevent system failures 

     

    Validation of the models adopted and optimization of the system on the basis of solar energy resources and exploitable groundwater has been performed for a pilot PVWP system in Inner Mongolia. The match between the water supplied through the pumping system and the grass water demand has been studied, and the effects of pumping on the available resources and the crop productivity have been evaluated. The economic analyses have also been conducted in order to establish the most cost effective solution to provide water for irrigation and to evaluate the project profitability. In addition, the CO2 emission reductions by using PV technology have been assessed as well.

     

    It was found that the proper designed PVWP system represents the best technical and economic solution to provide water for irrigation in the remote areas compared to other water pumping technologies, such as diesel water pumping and wind power water pumping due to the high positive net present values and short payback periods.

  • 6.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Cioccolanti, Luca
    François, B.
    Jurasz, J.
    Zhang, Yang
    Stridh, Bengt
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    A Multi-Country Economic Analysis Of Lithium-Ion Batteries For Peak Shaving And Price Arbitrage In Commercial Buildings2018Conference paper (Refereed)
  • 7.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, L.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Desideri, U.
    Bioethanol Production from Lignocellulosic Biomass, Evaluation of the Potential Bioethanol Production in Three Swedish Regions2009Conference paper (Refereed)
  • 8.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Holmberg, Aksel
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Pettersson, Oscar
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Klintenberg, Patrik
    Hangula, A.
    Namibia Energy Institute, Namibia University of Science and Technology, Windhoek, Namibia.
    Araoz, F. B.
    School of Chemical Science & Engineering, KTH Royal Institute of Technology, Teknikringen 42, Stockholm, Sweden.
    Zhang, Y.
    School of Chemical Science & Engineering, KTH Royal Institute of Technology, Teknikringen 42, Stockholm, Sweden.
    Stridh, Bengt
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. ABB AB, Corporate Research, Västerås, Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Chemical Science & Engineering, KTH Royal Institute of Technology, Teknikringen 42, Stockholm, Sweden.
    An open-source optimization tool for solar home systems: A case study in Namibia2016In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 130, no 15, p. 106-118Article in journal (Refereed)
    Abstract [en]

    Solar home systems (SHSs) represent a viable technical solution for providing electricity to households and improving standard of living conditions in areas not reached by the national grid or local grids. For this reason, several rural electrification programmes in developing countries, including Namibia, have been relying on SHSs to electrify rural off-grid communities. However, the limited technical know-how of service providers, often resulting in over- or under-sized SHSs, is an issue that has to be solved to avoid dissatisfaction of SHSs’ users. The solution presented here is to develop an open-source software that service providers can use to optimally design SHSs components based on the specific electricity requirements of the end-user. The aim of this study is to develop and validate an optimization model written in MS Excel-VBA which calculates the optimal SHSs components capacities guaranteeing the minimum costs and the maximum system reliability. The results obtained with the developed tool showed good agreement with a commercial software and a computational code used in research activities. When applying the developed optimization tool to existing systems, the results identified that several components were incorrectly sized. The tool has thus the potentials of improving future SHSs installations, contributing to increasing satisfaction of end-users.

  • 9.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Jige Quan, S.
    Georgia Institute of Technology, US.
    Robbio, F.I.
    ABB AB, Västerås, Sweden.
    Lundblad, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Sweden.
    Zhang, Y.
    KTH Royal Institute of Technology, Sweden.
    Ma, Tao
    Shanghai Jiao Tong University, China.
    Karlsson, Björn
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Optimization of a residential district with special consideration on energy and water reliability2017In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 194, p. 751-764Article in journal (Refereed)
    Abstract [en]

    Many cities around the world have reached a critical situation when it comes to energy and water supply, threatening the urban sustainable development. From an engineering and architecture perspective it is mandatory to design cities taking into account energy and water issues to achieve high living and sustainability standards. The aim of this paper is to develop an optimization model for the planning of residential urban districts with special consideration of renewables and water harvesting integration. The optimization model is multi-objective which uses a genetic algorithm to minimize the system life cycle costs, and maximize renewables and water harvesting reliability through dynamic simulations. The developed model can be used for spatial optimization design of new urban districts. It can also be employed for analyzing the performances of existing urban districts under an energy-water-economic viewpoint.

    The optimization results show that the reliability of the hybrid renewables based power system can vary between 40 and 95% depending on the scenarios considered regarding the built environment area and on the cases concerning the overall electric load. The levelized cost of electricity vary between 0.096 and 0.212 $/kW h. The maximum water harvesting system reliability vary between 30% and 100% depending on the built environment area distribution. For reliabilities below 20% the levelized cost of water is kept below 1 $/m3 making competitive with the network water tariff.

  • 10.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Leduc, S.
    IIASA, Laxenburg, Austria.
    Kim, M
    Korea Univ., Seul, Korea.
    Liu, J.
    Beijing Forestry Univ, Peoples R China.
    Kraxner, F.
    IIASA, Laxenburg, Austria.
    McCallum, I.
    IIASA, Laxenburg, Austria.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Stockholm.
    Optimal grassland locations for sustainable photovoltaic water pumping systems in China2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 301-307Article in journal (Refereed)
    Abstract [en]

    Grassland is of strategic importance for food security of China because of the high number of livestock raised in those areas. Grassland degradation due to climate change and overgrazing is thus regarded as severe environmental and economic threat for a sustainable future development of China. Photovoltaic water pumping (PVWP) systems for irrigation can play an important role for the conservation of grassland areas, halting degradation, improving its productivity and farmers' income and living conditions. The aim of this paper is to identify the technically suitable grassland areas for the implementation of PVWP systems by assessing spatial data on land cover and slope, precipitation, potential evapotranspiration and water stress index. Furthermore, the optimal locations for installing PVWP systems have been assessed using a spatially explicit renewable energy systems optimization model based on the minimization of the cost of the whole supply chain. The results indicate that the PVWP-supported grassland areas show high potential in terms of improving forage productivity to contribute to supplying the local demand. Nevertheless, the optimal areas are highly sensitive to several environmental and economic parameters such as ground water depth, forage water requirements, forage price and CO2 emission costs. These parameters need to be carefully considered in the planning process to meet the forage yield potentials.

  • 11.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Leduc, S.
    Int Inst Appl Syst Anal, Laxenburg, Austria..
    Kim, M.
    Korea Univ, South Korea..
    Olsson, A.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Zhang, J.
    Univ Maryland, USA..
    Liu, J.
    Int Inst Appl Syst Anal, Laxenburg, Austria.; South Univ Sci & Technol China, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China.;Beijing Forestry Univ, Sch Nat Conservat, Peoples R China..
    Kraxner, F.
    Int Inst Appl Syst Anal, Laxenburg, Austria..
    McCallum, I.
    Int Inst Appl Syst Anal, Laxenburg, Austria..
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Suitable and optimal locations for implementing photovoltaic water pumping systems for grassland irrigation in China2017In: APPLIED ENERGY, ISSN 0306-2619, Vol. 185, p. 1879-1889Article in journal (Refereed)
    Abstract [en]

    Grassland plays a key role for the food security of China because of the large number of livestock raised in those areas. Thus, grassland degradation due to climate change and overgrazing is considered as one of the most severe environmental and economic threat for the future sustainable development of China. Photovoltaic water pumping systems for irrigation can play a fundamental role for the conservation of grassland areas. This paper investigates the geospatial distribution of the technically suitable grassland locations for the implementation of photovoltaic water pumping systems. The technically suitable grassland areas were taken as starting point to assess the optimal locations. The assessment of the optimal locations was conducted using a spatially explicit optimization model of renewable energy systems based on the cost minimization of the whole forage supply chain. The results indicate that the photovoltaic water pumping systems provide high potential for improving forage productivity, contributing to meet the local demand. The optimal areas are highly sensitive to several environmental and economic parameters such as increased forage potential yield, forage management costs, forage water requirements, ground water depth, forage price and CO2 price. Most of the optimal areas are selected when the market forage price ranges from 300 to 500 $/tonne DM, indicating that the forage produced using PVWP technology for irrigation is already competitive compared to the imported forage.

  • 12.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Hao, Yong
    Jin, H.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Optimal C-PV/T system integrated in biomethane production2018Conference paper (Refereed)
  • 13.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering.
    Li, Hailong
    Mälardalen University, School of Innovation, Design and Engineering.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering.
    Dynamic modelling of a pv pumping system with special consideration on water demandIn: Proceedings of ICAE2012 / [ed] Applied EnergyConference paper (Other academic)
  • 14.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dynamic modelling of a PV pumping system with special consideration on water demand2013In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 112, p. 635-645Article in journal (Refereed)
    Abstract [en]

    The exploitation of solar energy in remote areas through photovoltaic (PV) systems is an attractive solution for water pumping for irrigation systems. The design of a photovoltaic water pumping system (PVWPS) strictly depends on the estimation of the crop water requirements and land use since the water demand varies during the watering season and the solar irradiation changes time by time. It is of significance to conduct dynamic simulations in order to achieve the successful and optimal design. The aim of this paper is to develop a dynamic modelling tool for the design of a of photovoltaic water pumping system by combining the models of the water demand, the solar PV power and the pumping system, which can be used to validate the design procedure in terms of matching between water demand and water supply. Both alternate current (AC) and direct current (DC) pumps and both fixed and two-axis tracking PV array were analyzed. The tool has been applied in a case study. Results show that it has the ability to do rapid design and optimization of PV water pumping system by reducing the power peak and selecting the proper devices from both technical and economic viewpoints. Among the different alternatives considered in this study, the AC fixed system represented the best cost effective solution.

  • 15.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Stockholm, Sweden.
    Techno-economic feasibility of the irrigation system for the grassland and farmland conservation in China: photovoltaic vs. wind power water pumping2015In: Energy Conversion and Management, ISSN 0196-8904, Vol. 103, no 6, p. 311-320Article in journal (Refereed)
    Abstract [en]

    Photovoltaic water pumping (PVWP) and wind power water pumping (WPWP) systems for irrigation represent innovative solutions for the restoration of degraded grassland and the conservation of farmland in remote areas of China. The present work systematically compares the technical and economic suitability of such systems, providing a general approach for the design and selection of the suitable technology for irrigation purposes. The model calculates the PVWP and WPWP systems sizes based on irrigation water requirement (IWR), solar irradiation and wind speed. Based on the lowest PVWP and WPWP systems components costs, WPWP systems can compete with PVWP systems only at high wind speed and low solar irradiation values. Nevertheless, taking into account the average specific costs both for PVWP and WPWP systems, it can be concluded that the most cost-effective solution for irrigation is site specific. According to the dynamic simulations, it has also been found that the PVWP systems present better performances in terms of matching between IWR and water supply compared to the WPWP systems. The mismatch between IWR and pumped water resulted in a reduction of crop yield. Therefore, the dynamic simulations of the crop yield are essential for economic assessment and technology selection.

  • 16.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zaccaria, Valentina
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, Yang
    Stridh, Bengt
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Flexibility Services Provided by Building Thermal Inertia2018Conference paper (Refereed)
  • 17.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, J.
    Institute of Water Resources and Hydropower Research, Beijing, China .
    Liu, J.
    Institute of Water Resources and Hydropower Research, Beijing, China .
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Economic optimization of photovoltaic water pumping systems for irrigation2015In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 95, p. 32-41Article in journal (Refereed)
    Abstract [en]

    Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor.

  • 18.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Olsson, A.
    KTH Royal Institute of Technology, Stockholm.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    An economic analysis of photovoltaic water pumping irrigation systems2016In: International Journal of Green Energy, ISSN 1543-5075, E-ISSN 1543-5083, Vol. 13, no 8, p. 831-839Article in journal (Refereed)
    Abstract [en]

    ABSTRACT: Irrigation using the photovoltaic water pumping (PVWP) systems represents a sustainable and attractive solution, which can combat Chinese grassland desertification and promote a sustainable development of the agricultural sector. This paper investigates the economics of PVWP systems taking into consideration the effects of the key components on the initial capital cost (ICC), life cycle cost (LCC), and revenues. Sensitivity analyses are conducted regarding the crop yield and price, cost of photovoltaic modules, and system components included in the ICC. Results show that the cost of the PVWP system is the most sensitive parameter affecting the ICC under the assumptions made, especially the cost of the PV modules; whereas, the crop production and price affect the net present value (NPV) and payback period (PBP) clearly. The PVWP has surplus power output when the crop water demand is low or it is non-irrigation season. The potential benefit from selling the surplus electricity is also discussed. In addition, the indirect benefits of carbon sequestration and CO2 emission reduction by applying PVWP systems are addressed in this paper.

  • 19.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Olsson, Alexander
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Economic analysis of photovoltaic water pumping irrigation systems2013Conference paper (Refereed)
    Abstract [en]

    Irrigation through photovoltaic water pumping (PVWP) system represents one of sustainable and attractivesolutions regarding the problems related to the Chinese grassland desertification. This paper is to investigatethe economics of PVWP systems taking in consideration of the key parameters affecting the sizing, and furtherthe initial capital cost (ICC), the life cycle cost (LCC) and revenues. In particular photovoltaic (PV) modules cost,availability of the well and of the irrigation system, designing water-head, irrigated area and related waterdemand, fuel price and grass production are investigated for the sensitivity analysis. The possibility ofcombining water pumping with electricity production for maximizing benefits is also discussed. Both PVWP anddiesel water pumping (DWP) systems are compared in terms of ICC and LCC. LCC, sensitivity, break-even point(BEP), net present value (NPV) and payback period (PBP) analyses are used to compare and evaluate theeconomic feasibility of the different alternatives investigated. The results show that the availability of the welland the depth of the ground water resources are the most sensitive parameters affecting the initial capitalcosts whereas the grass production and incentives affect mainly the NPV and PBP. The co-benefits for carbonmitigation and carbon credit trading through implementing photovoltaic water pumping system for the Chinesegrassland are also addressed in this paper.

  • 20.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Olsson, Alexander
    Zhang, Chi
    Berretta, Sara
    Hailong, Li
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    On-grid photovoltaic water pumping systems for agricultural purposes: Comparison of the potential benefits under three different incentive schemes2014Conference paper (Other academic)
  • 21.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Quan, S. J.
    Georgia Institute of Technology, USA.
    Robbio, F. I.
    ABB AB, Västerås, Sweden.
    Lundblad, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Sweden.
    Zhang, Y.
    KTH Royal Institute of Technology, Sweden.
    Ma, T.
    KTH Royal Institute of Technology, Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Sweden.
    Spatial optimization of residential urban district - Energy and water perspectives2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 88, p. 38-43Article in journal (Refereed)
    Abstract [en]

    Many cities around the world have reached a critical situation when it comes to energy and water supply, threatening the urban sustainable development. The aim of this paper is to develop a spatial optimization model for the planning of residential urban districts with special consideration of renewables and water harvesting integration. In particular, the paper analyses the optimal configuration of built environment area, PV area, wind turbines number and relative occupation area, battery and water harvester storage capacities, as a function of electricity and water prices. The optimization model is multi-objective which uses a genetic algorithm to minimize the system life cycle costs, and maximize renewables and water harvesting reliability. The developed model can be used for spatial optimization design of new urban districts. It can also be employed for analyzing the performances of existing urban districts under an energy-water-economic viewpoint. Assuming a built environment area equal to 75% of the total available area, the results show that the reliability of the renewables and water harvesting system cannot exceed the 6475 and 2500 hours/year, respectively. The life cycle costs of integrating renewables and water harvesting into residential districts are mainly sensitive to the battery system specific costs since most of the highest renewables reliabilities are guaranteed through the energy storage system.

  • 22.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Varini, Maria
    Chiche, Ariel
    Zhang, Y.
    Zhang, Chi
    Lundblad, Anders
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    High Share Renewable Islands Through Synergies Between Energy Networks2018Conference paper (Refereed)
  • 23.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    Wästhage, Louise
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Nookuea, Worrada
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Tan, Y.
    Royal Institute of Technology, Stockholm, Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology, Stockholm, Sweden.
    Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems2019In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 177, p. 782-795Article in journal (Refereed)
    Abstract [en]

    Considering the targets of Thailand in terms of renewable energy exploitation and decarbonization of the shrimp farming sector, this work evaluates several scenarios for optimal integration of hybrid renewable energy systems into a representative shrimp farm. In particular, floating and floating-tracking PV systems are considered as alternatives for the exploitation of solar energy to meet the shrimp farm electricity demand. By developing a dynamic techno-economic simulation and optimization model, the following renewable energy systems have been evaluated: PV and wind based hybrid energy systems, off-grid and on-grid PV based hybrid energy systems, ground mounted and floating PV based hybrid energy systems, and floating and floating-tracking PV based hybrid energy systems. From a water-energy nexus viewpoint, floating PV systems have shown significant impacts on the reduction of evaporation losses, even if the energy savings for water pumping are moderate due to the low hydraulic head. Nevertheless, the study on the synergies between water for food and power production has highlighted that the integration of floating PV represents a key solution for reducing the environmental impacts of shrimp farming. For the selected location, the results have shown that PV systems represent the best renewable solution to be integrated into a hybrid energy system due to the abundance of solar energy resources as compared to the moderate wind resources. The integration of PV systems in off-grid configurations allows to reach high renewable reliabilities up to 40% by reducing the levelized cost of electricity. Higher renewable reliabilities can only be achieved by integrating energy storage solutions but leading to higher levelized cost of electricity. Although the floating-tracking PV systems show higher investment costs as compared to the reference floating PV systems, both solutions show similar competiveness for reliabilities up to 45% due to the higher electricity production of the floating-tracking PV systems. The higher electricity production from the floating-tracking PV systems leads to a better competitiveness for reliabilities higher than 90% due to lower capacity requirements for the storage systems.

  • 24.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yang, Z.
    KTH Royal Institute of Technology, Sweden.
    Anders, Lundblad
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Sweden.
    An Open-source Platform for Simulation and Optimization of Clean Energy Technologies2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 946-952Article in journal (Refereed)
    Abstract [en]

    This paper is to describe an open-source code for optimization of clean energy technologies. The model covers the whole chain of energy systems including mainly 6 areas: renewable energies, clean energy conversion technologies, mitigation technologies, intelligent energy uses, energy storage, and sustainability. Originally developed for optimization of renewable water pumping systems for irrigation, the open-source model is written in Matlab® and performs simulation, optimization, and design of hybrid power systems for off-grid and on-grid applications. The model uses genetic algorithm (GA) as optimization technique to find the best mix among power sources, storage systems, and back-up sources to minimize life cycle cost, and renewable power system reliability. 

  • 25.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Dept Chem Engn, Stockholm, Sweden..
    Zhang, J.
    Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA..
    Yao, T.
    Sci Syst & Applicat Inc SSAI, Lanham, MD 20706 USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Andersson, S.
    Swedish Meteorol & Hydrol Inst, SE-60176 Norrkoping, Sweden..
    Landelius, T.
    Swedish Meteorol & Hydrol Inst, SE-60176 Norrkoping, Sweden..
    Melton, F.
    NASA ARC CREST, Moffett Field, CA 94035 USA.;Calif State Univ Monterey Bay, Sch Nat Sci, Seaside, CA 93955 USA..
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Dept Chem Engn, SE-10044 Stockholm, Sweden..
    Managing agricultural drought in Sweden using a novel spatially-explicit model from the perspective of water-food-energy nexus2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 197, p. 1382-1393Article in journal (Refereed)
    Abstract [en]

    Using a multi-disciplinary approach, this paper integrated spatial analysis with agricultural and energy system modelling to assess the impacts of drought on crop water demand, water availability, crop yield, and electricity requirements for irrigation. This was done by a novel spatially-explicit and integrated water-food-energy nexus model, using the spatial climatic data generated by the mesoscale MESAN and STRANG models. In this study, the model was applied to quantify the effects of drought on the Swedish irrigation sector in 2013, a typical drought year, for a specific crop. The results show that drought can severely affect the crop yield if irrigation is not applied, with a peak yield reduction of 18 t/ha, about 50 % loss as compared to the potential yield in irrigated conditions. Accordingly, the water and energy requirements for irrigation to halt the negative drought effects and maintain high yields are significant, with the peaks up to 350 mm and 700 kWh per hectare. The developed model can be used to provide near real-time guidelines for a comprehensive drought management system. The model also has significant potentials for applications in precision agriculture, especially using high-resolution satellite data.

  • 26.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, Jie
    Yao, Tian
    Andersson, Sandra
    Landelius, Tomas
    Melton, Forrest
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Modelling the water-food-energy nexus during agricultural drought in Sweden2018Conference paper (Refereed)
  • 27.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhu, Y.
    Chengdu University, China.
    Brugiati, Elena
    Università Degli Studi di Perugia, Italy.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    PV water pumping for irrigation equipped with a novel control system for water savings2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 61, p. 949-952Article in journal (Refereed)
    Abstract [en]

    Typically, PV water pumping (PVWP) systems for irrigation are normally designed based on the worst conditions, such as high water demand and low solar irradiation. Therefore, the installed PVWP systems become oversized in most of time. Since the conventional control systems don't optimize the water supply, the water losses are increased. To remedy the problems related to the operation of the oversized systems, a novel control system is proposed. The control unit interacts between water demand and water supply in order to pump only the amount required by crops. Moreover, the novel control system substitutes the conventional protection approach with a method based on the ground water resources availability and response. The novel control system represents an innovative solution for water savings in PV watering applications.

  • 28.
    Chen, S.
    et al.
    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China.
    Liu, J.
    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China.
    Wang, H.
    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China.
    Yan, J.
    School of Chemical Science, Royal Institute of Technology, Stockholm, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, J.
    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China.
    Interaction relationship between urban domestic energy consumption and water use - A case study of Beijing and Shanghai2016In: Water Policy, ISSN 1366-7017, E-ISSN 1996-9759, Vol. 18, no 3, p. 670-684Article in journal (Refereed)
    Abstract [en]

    Energy consumption and water use are inextricably linked. Combining research on energy consumption and water use in an urban context provides a scientific basis for the integrated planning of energy and water supply systems. Domestic energy and water are among the most consumed resources in urban environments. Furthermore, domestic resources represent an increasing proportion of the total resources consumed. This paper explores four key indicators of urban energy consumption (UEC) and water use in Beijing and Shanghai for the period of 2000 to 2011. Using correlation analysis, this study establishes the intrinsic relationship between UEC and water use. It also offers an analysis of the consumption trends of these two resources as well as their interactive relationship. The results show that urban domestic energy consumption (UDEC) and water use have a significant linear correlation: UDEC is positively correlated with water use, and the correlation coefficients of Beijing and Shanghai are 0.81 and 0.97, respectively. In Beijing, urban domestic energy and water use per capita are negatively correlated, with the high correlation coefficient of 0.93. In Shanghai, urban domestic energy and water use per capita are positively correlated, with the correlation coefficient of 0.90.

  • 29.
    Desideri, U.
    et al.
    Università di Perugia.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Analysis and comparison between a concentrating solar and a photovoltaic power plant2014In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 113, p. 422-433Article in journal (Refereed)
    Abstract [en]

    Solar energy is a source, which can be exploited in two main ways to generate power: direct conversion into electric energy using photovoltaic panels and by means of a thermodynamic cycle. In both cases the amount of energy, which can be converted, is changing daily and seasonally, causing a discontinuous electricity production. In order to limit this drawback, concentrated solar power plants (CSP) and photovoltaic plants (PV) can be equipped with a storage system that can be configured not only for covering peak-loads but also for the base-load after the sunset or before the sunrise. In CSP plants it is the sun's thermal energy to be stored, whereas in PV applications it is the electrical energy to be stored in batteries, although this is not economically and environmentally feasible in large-scale power plants.The main aim of this paper is to study the performance of concentrated solar power plants equipped with molten salts thermal storage to cover a base load of 3MWel. In order to verify the possibility of storing effectively the thermal energy and to design a plant for base load operation, two locations were chosen for the study: Gela in southern Italy, and Luxor in Egypt. The electricity production of the CSP facilities has been analyzed and then compared with the electricity production of PV plants. Two different comparisons were done, one by sizing the PV plant to provide the same peak power and one using the same collectors surface. This paper has also highlighted some important issues in site selection and in design criteria for CSP plants used for base load operation.The high variability of the direct normal radiation during the year in southern Italy may cause several problems in CSP facilities, mainly related to the wide range of energy input from the sun. The more uniform and higher values of the solar radiation in the Egyptian location mitigates this problem and allows achieving higher efficiencies than in southern Italy. In most cases the electricity produced by the CSP plant is higher than that produced by a similar PV plant, because the presence of the storage system guarantees the continuity of electricity production even without solar radiation. An economic analysis based on the estimation of the levelized electricity cost (LEC) for both CSP and PV power plants located both in south of Italy and Egypt was carried out in order to investigate which is the most cost effective solution. In all the cases considered, the CSP facilities resulted the best option in terms of cost of electricity produced due to the continuity of energy production during the night hours.

  • 30.
    Du, F.
    et al.
    Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, United Kingdom.
    Zhang, J.
    Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, United Kingdom.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Galloway, S.
    Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, United Kingdom.
    Lo, K. L.
    Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, United Kingdom.
    Modelling the impact of social network on energy savings2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 178, p. 56-65Article in journal (Refereed)
    Abstract [en]

    It is noted that human behaviour changes can have a significant impact on energy consumption, however, qualitative study on such an impact is still very limited, and it is necessary to develop the corresponding mathematical models to describe how much energy savings can be achieved through human engagement. In this paper a mathematical model of human behavioural dynamic interactions on a social network is derived to calculate energy savings. This model consists of a weighted directed network with time evolving information on each node. Energy savings from the whole network is expressed as mathematical expectation from probability theory. This expected energy savings model includes both direct and indirect energy savings of individuals in the network. The savings model is obtained by network weights and modified by the decay of information. Expected energy savings are calculated for cases where individuals in the social network are treated as a single information source or multiple sources. This model is tested on a social network consisting of 40 people. The results show that the strength of relations between individuals is more important to information diffusion than the number of connections individuals have. The expected energy savings of optimally chosen node can be 25.32% more than randomly chosen nodes at the end of the second month for the case of single information source in the network, and 16.96% more than random nodes for the case of multiple information sources. This illustrates that the model presented in this paper can be used to determine which individuals will have the most influence on the social network, which in turn provides a useful guide to identify targeted customers in energy efficiency technology rollout programmes.

  • 31.
    Hao, Y.
    et al.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Li, W.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Tian, Z.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, 100190, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Stockholm, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Jin, H.
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Stockholm, Sweden.
    Integration of concentrating PVs in anaerobic digestion for biomethane production2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, ISSN 0306-2619, Vol. 231, p. 80-88Article in journal (Refereed)
    Abstract [en]

    Biogas produced from anaerobic digestion processes is considered as an important alternative to natural gas and plays a key role in the emerging market for renewable energy. Aiming at achieving a more sustainable and efficient biomethane production, this work proposed a novel energy system, which integrates concentrating photovoltaic/thermal (C-PV/T) hybrid modules into a biogas plant with chemical absorption for biogas upgrading. The investigated energy system was optimized based on the data from an existing biogas plant, and its techno-economic feasibility was evaluated. Results show that about 7% of the heat consumption and 12% of the electricity consumption of the biogas plant can be covered by solar energy, by using the produced heat in a cascade way according to the operating temperature of different processes. The production of biomethane can also be improved by 25,800 N m3/yr (or 1.7%). The net present value of the integrated system is about 2.78 MSEK and the payback period is around 10 years. In order to further improve the economic performance, it is of great importance to lower the capital cost of the C-PV/T module. 

  • 32.
    Jurasz, Jakub
    et al.
    Mälardalen University.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    The potential of photovoltaic systems to reduce energy costs for office buildings in time-dependent and peak-load-dependent tariffs2019In: Sustainable cities and society, ISSN 2210-6707, Vol. 44, p. 871-879Article in journal (Refereed)
    Abstract [en]

    Electrical power generation across the world is facing dramatic changes for a variety of reasons related to reliability, economics and environmental concerns. Over recent years a significant increase has been observed in installed capacity of photovoltaic systems. Due to their typical seasonal and diurnal energy conversion patterns their integration into power systems creates new opportunities as well as threats. This paper intends to show how photovoltaics can contribute to reducing peak load in office buildings and thereby minimise expenditure on electricity during time- and peak-load-dependent energy prices/tariffs. An additional benefit is also provided to the national power system by reducing the need for peaking power stations. The calculations are performed for energy tariffs commonly used for commercial buildings in Poland. The simulation relies on climatic and price data for 2016. The results show significant potential for photovoltaics to reduce the peak load (from almost 60 kW to slightly over 44 kW) whilst simultaneously minimising energy costs to the building (from 1.2% up to 5.8% depending on the selected tariff). This study demonstrates the economic benefits of using PV system for reducing peak loads. A sensitivity analysis with regard to photovoltaics investment costs is carried out showing that the increasing investment costs have different impact on total energy cost depending on the considered energy tariff.

  • 33.
    Li, Hailong
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Ningbo RX New Materials Tch. Co. Ltd., China; KTH, Stockholm, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Ningbo RX New Materials Tch. Co. Ltd., China.
    Berretta, Sara
    Tan, Yuting
    Ningbo RX New Materials Tch. Co. Ltd., China; KTH, Stockholm, Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH, Stockholm, Sweden.
    Dynamic performance of the standalone wind power driven heat pump2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 103, p. 40-45Article in journal (Refereed)
    Abstract [en]

    Reducing energy consumption and increasing use of renewable energy in the building sector is crucial to the mitigationof climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat forthe detached houses, especially those that even don’t have access to the grid. This work is to investigate the dynamic performance of a heat pump system directly driven by a wind turbine. The heat demand of a detached single familyhouse was simulated in details. To handle the intermittent characteristic of wind power, an electric energy storage system was included. According to the simulations, the wind turbine itself cannot always satisfy the electricity demand of the heat pump, and a larger size of the energy storage system can reduce the probability of load loss. However, it is different from the energy storage system that increasing the capacity of wind turbines may increase the probability of load loss instead, due to the different start-up speed of wind turbines. In order to maximize the system benefit, the capacity of the wind turbine and the size of the energy storage system should be optimized simultaneously based on dynamic simulations.

  • 34.
    Li, Hailong
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Ningbo RX New Materials Tch. Co. Ltd., Ningbo, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Ningbo RX New Materials Tch. Co. Ltd., Ningbo, China.
    Tan, Y.
    Ningbo RX New Materials Tch. Co. Ltd., Ningbo, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Feasibility study about using a stand-alone wind power driven heat pump for space heating2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 228, p. 1486-1498Article in journal (Refereed)
    Abstract [en]

    Reducing energy consumption and increasing the use of renewable energy in the building sector are crucial to the mitigation of climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat to the detached houses, especially those that even do not have access to the electricity grid. This work is to investigate the dynamic performance of a heat pump system driven by wind turbine through dynamic simulations. In order to understand the influence on the thermal comfort, which is the primary purpose of space heating, the variation of indoor temperature has been simulated in details. Results show that the wind turbine is not able to provide the electricity required by the heat pump during the heating season due to the intermittent characteristic of wind power. To improve the system performance, the influences of the capacity of wind turbine, the size of battery and the setpoint of indoor temperature were assessed. It is found that increasing the capacity of wind turbines is not necessary to reduce the loss of load probability; while on the contrary, increasing the size of battery can always reduce the loss of load probability. The setpoint temperature clearly affects the loss of load probability. A higher setpoint temperature results in a higher loss of thermal comfort probability. In addition, it is also found that the time interval used in the dynamic simulation has significant influence on the result. In order to have more accurate results, it is of great importance to choose a high resolution time step to capture the dynamic behaviour of the heat supply and its effect on the indoor temperature.

  • 35. Li, Hailong
    et al.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering.
    Dynamic Modeling of a PV Pumping System with Special Consideration on Water Demand2012Conference paper (Refereed)
  • 36.
    Li, Hailong
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering.
    Feasibility of integrating solar energy into a power plant with amine-based chemical absorption for CO2 capture2012In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 9, p. 272-280Article in journal (Refereed)
    Abstract [en]

    Solar thermal energy has the potential to supply the thermal demand of stripper reboiler in the power plant with amine-based post combustion CO2 capture. The performance of a power plant integrated with solar assisted post combustion CO2 capture (SCC) is largely affected by the local climatic conditions, such as solar irradiation, sunshine hours and ambient temperature, the type of solar thermal collector and CO2 recovery ratio. The feasibility evaluation results about such a power plant show that the cost of electricity (COE) and cost of CO2 avoidance (COA) are mainly determined by the local climatic conditions. For the locations having higher solar irradiation, longer sunshine hours and higher ambient temperature, the power plant with SCC has lower COE and COA. COE and COA are sensitive to the prices of solar thermal collectors. In order to achieve lower COE and COA compared to the power plant integrated with non-solar assisted post combustion capture, the price of solar thermal collector has to be lower than 150 USD/m(2) and 90 USD/m(2) for the solar trough and vacuum tube, respectively.

  • 37.
    Li, Xueqiang
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin University, Tianjin, China; Tianjin University of Commerce, Tianjin, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Tianjin University of Commerce, Tianjin, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhu, K.
    Tianjin University of Commerce, Tianjin, China.
    Energy storage systems for refrigerated warehouses2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 143, p. 94-99Article in journal (Refereed)
    Abstract [en]

    To reduce the peak load, dynamic electricity price schemes have been widely used. Refrigerated warehouses consume a large amount of energy, most of which happens during the daytime due to the higher ambient temperature. This work evaluated the potential benefits of integrating energy storage in the refrigerated warehouses. Two types of energy storage systems have been considered, including a cold energy storage system and an electrical energy storage system. A dynamic model has been developed in TRNSYS to study the performance of those two energy storage systems and assess the benefits. Results show that using the cold energy storage to shift power consumption from daytime to nighttime can increase the energy efficiency of the refrigeration system. However, as the electrical energy storage system can shift more power consumption, it can achieve a large cost saving. Compared to the reference system without energy storage, the introductions of a cold energy storage system and an electrical energy storage system can reduce the operational cost by 10 and 53.7% respectively. 

  • 38.
    Li, Y.
    et al.
    Tsinghua University, Beijing, China.
    Jin, Y.
    Tsinghua University, Beijing, China.
    Li, J.
    Tsinghua University, Beijing, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yu, Z.
    University of Stavanger, Stavanger, Norway .
    Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 172, p. 47-58Article in journal (Refereed)
    Abstract [en]

    In this study, batch tests were performed to evaluate the effects of different thermal pretreatment temperatures (55-160 °C) and durations (15-120 min) on the anaerobic digestion of kitchen waste (KW). Two commonly used approaches, namely the modified Gompertz model and the approach developed by Koch and Drewes, were applied to assess the effects of the different pretreatment parameters on the biomethane yield, lag time and hydrolysis rate constant via data fitting. The subsequent anaerobic digestion of KW pretreated at 55-120 °C presented greater efficiency, and longer treatment durations resulted in increased methane production and higher hydrolysis rate constants. These findings were obtained due to the lower nutrient loss observed in KW treated at lower temperature treatments compared with that found with higher temperature treatments. In general, the effects of thermal pretreatment on the lag phase and hydrolysis rate differed depending on the treatment parameters leading to the variations in the KW compositions. The soundness of the two model results was evaluated, and higher statistical indicators (R2) were found with the modified Gompertz model than with the approach developed by Koch and Drewes. 

  • 39.
    Liu, J.
    et al.
    China Institute of Water Resources and Hydropower Research, Beijing, China.
    Chen, S.
    China Institute of Water Resources and Hydropower Research, Beijing, China.
    Wang, H.
    China Institute of Water Resources and Hydropower Research, Beijing, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Evolution of China's urban energy consumption structure-a case study in Beijing2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 88, p. 88-93Article in journal (Refereed)
    Abstract [en]

    China is a coal-based energy consuming country. The proportion of coal is up to 70% in the energy consumption structure in 1990s. In the past 20 years, driven by energy saving policy, China's energy consumption structure has undergone great changes, especially in urban areas. This paper explores the evolution of energy-use structure at the national level and the level of Beijing City in China. Four major energy sources were considered, including coal, oil, natural gas and electricity. The dataset was collected from 1990 to 2012. The results show that the proportion of coal consumption decreased by approximately 20% from 1990 to 2012 at the national level in compare with nearly 50% at the level of Beijing City. Furthermore, the proportion of natural gas consumption and other clean energies rose. In Beijing the natural gas and other clean energies account for over 60% of the total energy in 2012, which played an important role in improving the local environment.

  • 40.
    Liu, M.
    et al.
    School of Environmental Science and Engineering, Tianjin University, China.
    Zhu, C.
    School of Environmental Science and Engineering, Tianjin University, China.
    Zhang, H.
    School of Environmental Science and Engineering, Tianjin University, China.
    Zheng, W.
    School of Environmental Science and Engineering, Tianjin University, China.
    You, S.
    School of Environmental Science and Engineering, Tianjin University, China.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    The environment and energy consumption of a subway tunnel by the influence of piston wind2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 246, p. 11-23Article in journal (Refereed)
    Abstract [en]

    With the flourishing development of the subway construction, it becomes increasingly urgent to improve the subway tunnel environment and reduce the energy consumption of the tunnel ventilation system. The tunnel environment is significantly affected by the piston wind, which is influenced by the train speed. In this paper, a three-dimensional computational model of a subway tunnel is developed and validated through experiments. The model is used to study the carbon dioxide concentration and thermal environment of the subway tunnel. The optimal train speed is proposed with the aim to minimize the volume of mechanical supply air and to optimize the carbon dioxide concentration and thermal environment of the tunnel. In parallel with the considerations of tunnel environment, the subways in 25 cities of China are analyzed to study the energy conservation of the tunnel ventilation system by making full use of piston wind. The results indicate that the optimal train speed is 30 m/s based on the carbon dioxide concentration and thermal environment. The effective utilization of the piston wind can reduce 13%∼32% of the energy consumption for tunnel ventilation. The calculation method of the optimal train speed developed in this paper is also applicable to ordinary railway tunnels and high-speed railway tunnels.

  • 41.
    Mancuso, Martin Vincent
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Evaluation of Grid-Connected Micro-Grid Operational Strategies2019Conference paper (Refereed)
    Abstract [en]

    This study investigates the operational performances of a grid-connected microgrid with integrated solar photovoltaic and battery energy storage. The study is based upon the techno-economic specifications and theoretical performance of the distributed energy resource and storage systems, as well as on measured consumer load data and electrical utility retail and distribution data for representative residential and commercial loads for the city of Västerås, Sweden. The open-source Matlab®-based simulation tool, OptiCE, is used for performing simulations and optimization. To support the attainment of one of the objectives, peak shaving of the consumer load, a battery operational strategy algorithm has been developed to balance peak shaving and PV self-consumption. Comparisons among three types of battery, lead-acid, lithium-ion and vanadium-redox flow, are also performed. A 117 kW p photovoltaic system paired with a lithium-ion battery of 41.1 kWh capacity is the optimal solution found for the considered commercial load. The calculated battery capacity represents the best trade-off for the set multi-objective optimization problem. The simulation of this system predicts the possibility to shave the customer load profile peaks up to 20% for the month of April. The corresponding self-consumption ratio is 88%. Differences in the relationship between the load profiles and the system performance have been qualitatively noted. Furthermore, the simulation results for lead-acid, lithium-ion and vanadium-redox flow battery systems reveal that lithium-ion batteries delivers the best trade-off between total annualized cost and peak shaving performance for both residential and commercial applications.

  • 42.
    Md Lokman, Hosain
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Bel Fdhila, Rebei
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Sand, U.
    Engdahl, J.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    CFD Modeling of Real Scale Slab Reheating FurnaceConference paper (Refereed)
  • 43.
    Mirmoshtaghi, Guilnaz
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Mälardalen Högskola.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    EVALUATION OF DIFFERENT BIOMASS GASIFICATION MODELING APPROACHES FOR FLUIDIZED BED GASIFIERS2016In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 91, p. 69-82Article in journal (Refereed)
    Abstract [en]

    To develop a model for biomass gasification in fluidized bed gasifiers with high accuracy and generality that could be used under various operating conditions, the equilibrium model (EM) is chosen as a general and case-independent modeling method. However, EM lacks sufficient accuracy in predicting the content (volume fraction) of four major components (H2, CO, CO2 and CH4) in product gas. In this paper, three approaches—MODEL I, which restricts equilibrium to a specific temperature (QET method); MODEL II, which uses empirical correlations for carbon, CH4, C2H2, C2H4, C2H6 and NH3 conversion; and MODEL III, which includes kinetic and hydrodynamic equations—have been studied and compared to map the barriers and complexities involved in developing an accurate and generic model for the gasification of biomass.

    This study indicates that existing empirical correlations can be further improved by considering more experimental data. The updated model features better accuracy in the prediction of product gas composition in a larger range of operating conditions. Additionally, combining the QET method with a kinetic and hydrodynamic approach results in a model that features less overall error than the original model based on a kinetic and hydrodynamic approach.

  • 44.
    Mirmoshtaghi, Guilnaz
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Mälardalen Högskola.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    THE EFFECT OF INCLUDING HYDRODYNAMICS FOR MODELING ATMOSPHERIC BUBBLING FLUIDIZED BED GASIFIERS2014Conference paper (Refereed)
  • 45.
    Mirmoshtaghi, Guilnaz
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Skvaril, Jan
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    The influence of different parameters on biomass gasification in circulating fluidized bed gasifiers2016In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 126, p. 110-123Article in journal (Refereed)
    Abstract [en]

    The mechanism of biomass gasification has been studied for decades. However, for circulating fluidized bed (CFB) gasifiers, the impacts of different parameters on the gas quality and gasifiers performance have still not been fully investigated. In this paper, different CFB gasifiers have been analyzed by multivariate analysis statistical tools to identify the hidden interrelation between operating parameters and product gas quality, the most influencing input parameters and the optimum points for operation. The results show that equivalence ratio (ER), bed material, temperature, particle size and carbon content of the biomass are the input parameters influencing the output of the gasifier the most. Investigating among the input parameters with opposite impact on product gas quality, cases with optimal gas quality can result in high tar yield and low carbon conversion while low tar yield and high carbon conversion can result in product gas with low quality. However using Olivine as the bed material and setting ER value around 0.3, steam to biomass ratio to 0.7 and using biomass with 3 mm particle size and 9 wt% moisture content can result in optimal product gas with low tar yield.

  • 46.
    Mirmoshtaghi, Guilnaz
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Mälardalen Högskola.
    Skvaril, Jan
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    INVESTIGATION OF EFFECTIVE PARAMETERS ON BIOMASS GASIFICATION IN CIRCULATING FLUIDIZED BED GASIFIERS2015Conference paper (Refereed)
  • 47.
    Mirmoshtaghi, Guilnaz
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Skvaril, Jan
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Investigation of Most Effective Parameters on Biomass Gasufication in Circulating Fluidized bed Gasifiers2015In: Forest and Plant Bioproducts Division 2015 - Core Programming Area at the 2015 AIChE Annual Meeting, 2015, p. 189-200Conference paper (Refereed)
  • 48.
    Nookuea, Worrada
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Tan, Y.
    School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Impacts of thermo-physical properties of gas and liquid phases on design of absorber for CO2 capture using monoethanolamine2016In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 52, p. 190-200Article in journal (Refereed)
    Abstract [en]

    Absorption of CO2 with aqueous amines in post-combustion capture is characterized as a heat and mass transfer processes with chemical reaction, which is sensitively affected by the thermo-physical properties of fluids. In order to optimize the design of the absorber of CO2 capture process, in this paper, the impacts of thermo-physical properties on the column design were investigated. Furthermore, the property impacts on the capital cost of the absorber unit were also identified and analyzed. Results show that the gas phase density has the most significant effect on the column diameter. Underestimation of the gas phase density of 10% may result in an increase of about 6% of the column diameter. For the packing height, the liquid phase density has the most significant effect. 10% underestimation of the liquid phase density may result in an increase of 8% of the packing height. Moreover, the effect from the liquid phase viscosity is also significant. For the annual capital cost, the liquid phase density also shows the most significant effect. Underestimation of the liquid phase density of 10% leads to the cost overestimation of $1.4 million for the absorption column for a 400 MW coal-fired power plant. Therefore, the development of the flue gas density model and liquid phase density and viscosity models of the aqueous amine solution with CO2 loading should be prioritized.

  • 49.
    Olsson, A.
    et al.
    Royal Institute of Technology, Stockholm.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Lind, M.
    ZeroMission, Stockholm.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands2014In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 136, p. 1145-1154Article in journal (Refereed)
    Abstract [en]

    The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool.The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential.The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70-90%. When applying the methodology developed in this paper to a case in Qinghai, China, we conclude that using a PVWPS to restore degraded grasslands for increased grass production and desertification control has a climate change mitigation benefit of 148Mg (1Mg=1metricton) CO2-equivalents (CO2-eq) per hectare in a cold temperate, dry climate during a 20year process of soil organic carbon sequestration and emissions reductions. Leakage due to an increase in N2O emissions from the additional biomass production and introduction of nitrogen fixing species is included in this result. The most important conclusion from our case is that if soil carbon sequestration is lower than 24Mg CO2-eq per hectare including leakage, then the climate change mitigation benefit is larger if PV is used to produce electricity for the grid.

  • 50.
    Olsson, Alexander
    et al.
    KTH Royal Inst Technology, Stockholm, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Lind, Marten
    ZeroMission, Stockholm, Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    PV water pumping for carbon sequestration in dry land agriculture2015In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 102, p. 169-179Article in journal (Refereed)
    Abstract [en]

    This paper suggests a novel model for analysing carbon sequestration activities in dry land agriculture considering the water-food-energy-climate nexus. The paper is based on our on-going studies on photovoltaic water pumping (PVWP) systems for irrigation of grasslands in China. Two carbon sequestration projects are analysed in terms of their water productivity and carbon sequestration potential. It is concluded that the economic water productivity, i.e. how much water that is needed to produce an amount of grass, of grassland restoration is low and that there is a need to include several of the other co-benefits to justify the use of water for climate change mitigation. The co-benefits are illustrated in a nexus model including (1) climate change mitigation, (2) water availability, (3) downstream water impact, (4) energy security, (5) food security and (6) moisture recycling. We argue for a broad approach when analysing water for carbon sequestration. The model includes energy security and food security together with local and global water concerns. This makes analyses of dry land carbon sequestration activities more relevant and accurate. Without the nexus approach, the co-benefits of grassland restoration tend to be diminished. 

12 1 - 50 of 85
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf