mdh.sePublications
Change search
Refine search result
12 1 - 50 of 66
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Avelin, Anders
    et al.
    Mälardalen University, School of Business, Society and Engineering.
    Jansson, J.
    Mälardalen University, School of Business, Society and Engineering.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering.
    Use of combined physical and statistical models for online applications in the pulp and paper industry2009In: Mathematical and Computer Modelling of Dynamical Systems, Vol. 15, no 5, p. 425-434Article in journal (Refereed)
    Abstract [en]

    This paper discusses the accuracy of different types of models. Statistical models are based on process data and/or observations from lab measurements. This class of models are called black box models. Physical models use physical relationships to describe a process. These are called white box models or first principle models. The third group is sometimes called grey box models, being a combination of black box and white box models. Here we discuss two examples of model types. One is a statistical model where an artificial neural network is used to predict NOx in the exhaust gases from a boiler at Mlarenergi AB in Vsters, Sweden. The second example is a grey box model of a continuous digester. The digester model includes mass balances, energy balances, chemical reactions and physical geometrical constraints to simulate the real digester. We also propose that a more sophisticated model is not required to increase the accuracy of the predicted measurements.

  • 2.
    Blarke, Morten B
    et al.
    Aalborg University.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Intermittency-friendly and high-efficiency cogeneration: Operational optimisation of cogeneration with compression heat pump, flue gas heat recovery, and intermediate cold storage2011In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 36, no 12, p. 6867-6878Article in journal (Refereed)
    Abstract [en]

    This paper develops, implements, and applies a mathematical model for economic unit dispatch for a novel cogeneration concept (CHP-HP-FG-CS (CHP with compression heat pump and cold storage using flue gas heat)) that increases the plant's operational flexibility. The CHP-HP-FG-CS concept is a high-efficiency and widely applicable option in distributed cogeneration better supporting the co-existence between cogenerators and intermittent renewables in the energy system. The concept involves integrating an efficient high-temperature compression heat pump that uses only waste heat recovered from flue gases as low-temperature heat source, and an intermediate cold thermal storage allowing for non-concurrent operation of the cogeneration unit and the heat pump unit. The model is applied for a paradigmatic case study that shows how the integration of a heat pump affects the operational strategy of a cogeneration plant. It is found that CHP-HP-FG-CS offers significant reductions in fuel consumption (-8.9%) and operational production costs (-11.4%). The plant's fuel-to-energy efficiency increases from 88.9 to 95.5%, which is state-of-the-art. The plant's intermittency-friendliness coefficient Rc improves only marginally due to the constrained nature of the low-temperature heat source and the associated small capacity of the heat pump unit. Significant improvements in Rc are found when increasing the heat pump capacity assuming the availability of an unconstrained heat source

  • 3.
    Daianova, Lilia
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Evaluation of a regional bioenergy system with local production of biofuel for transportation, integrated with a CHP plant2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 92, p. 739-749Article in journal (Refereed)
    Abstract [en]

    The share of renewable liquid fuels (ethanol, fatty acid methyl ester, biogas, and renewable electricity) in the total transportation fuel in Sweden, has increased by the end of 2009 to such level that e.g. domestic bioethanol production is unable to satisfy current ethanol fuel demand. Regional small-scale ethanol production can assist the region in covering the regional needs in transport fuel supply.

    Current case study system includes the production of ethanol, biogas, heat and power from locally available cereals straw. A mixed integer programming (MIP) model is developed for cost optimization of regional transport fuel supply (ethanol, biogas and petrol). The model is applied for two cases, one when ethanol production plant is integrated with an existing CHP plant (polygeneration), and one with a standalone ethanol production plant.

    The optimization results show that for both cases the changes in ethanol production costs have the biggest influence on the costs for supplying regional passenger car fleet with transport fuel. Petrol fuel price and straw production costs have also a significant effect on costs for supplying cars with transport fuel for both standalone ethanol production and integrated production system.

    By integrating the ethanol production process with a CHP plant, the costs for supplying regional passenger car fleet with transport fuel can be cut by 31%, from 150 to 104 €/MW h fuel, which should be compared with E5 costs of 115 €/MW h (excl VAT).

  • 4.
    Daianova, Lilia
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Local production of bioethanol to meet the growing demands of a regional transport system2011In: Proceedings of World Renewable Energy Congress 2011, May 2011, Linköping, Sweden, 2011Conference paper (Refereed)
    Abstract [en]

    : Energy security and the mitigation of greenhouse gas emissions (GHG) are the driving forces behind the development of renewable fuel sources worldwide. In Sweden, a relatively rapid development in bioethanol usage in transportation has been driven by the implementation of national taxation regulations on carbon neutral transport fuels. The demand for bioethanol to fuel transportation is growing and cannot be met through current domestic production alone. Lignocellulosic ethanol derived from agricultural crop residues may be a feasible alternative source of ethanol to secure a consistent regional fuel supply in Swedish climatic conditions. This paper analyzes how the regional energy system can contribute to reducing CO2 emissions by realizing local small scale bioethanol production and substituting petrol fuel with high blend ethanol mixtures for private road transport. The results show that about 13 000 m3 of bioethanol can be produced from the straw available in the studied region and that this amount can meet the current regional ethanol fuel demand. Replacing the current demand for petrol fuel for passenger cars with ethanol fuel can potentially reduce CO2 emissions from transportation by 48%.

  • 5.
    Daianova, Lilia
    et al.
    Mälardalen University, School of Business, Society and Engineering.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering.
    Locally produced bioethanol for a regional self-sufficient transport fuel system2009Conference paper (Refereed)
  • 6.
    Daraei, Mahsa
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 252, article id 113461Article in journal (Refereed)
    Abstract [en]

    The increasing atmospheric CO2 concentration has caused a transformative shift in global energy systems, which is contributing to an increased use of renewables. Sweden is among the countries trying to shift to a fossil-fuel-free system in all energy sectors. This paper addresses the fuel demand and supply in the transportation sector in the county of Västmanland in Sweden. A Mixed Integer Linear Programming optimization model is developed to minimize cost in the studied system. The model is further used to investigate the influence of three different scenarios on production planning of regional Combined Heat and Power (CHP) plants: (1) straw-based biofuel production integrated with existing CHP plants to fuel combustion engine vehicles, (2) use of electric vehicles, and (3) use of hybrid vehicles fueled by both electricity and bioethanol. Potential solar power generation from rooftop solar cells is also included in the model. The energy system in scenario 2 is found to have the highest overall system efficiency; however, a large amount of power needs to be imported to the system. Hybrid vehicles can potentially reduce the electricity import and CO2 emissions compared to the current situation. Electricity production from rooftop solar collectors could provide the energy needs of the vehicles during summer, while regionally produced straw-based bioethanol integrated with CHP plants can satisfy the fuel needs of the vehicles in winter. This approach could affect the production planning of CHP plants, result in less fuel use and increase the share of renewable resources in the regional transportation system. 

  • 7.
    Daraei, Mahsa
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Evaluation of potential fossil fuel free energy system: Scenarios for optimization of a regional integrated system2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 964-970Article in journal (Refereed)
    Abstract [en]

    Population growth and urbanization have led to increases in energy demand and consequently, greenhouse gas emissions. Therefore, the availability of the fossil fuel as the main source of energy supply has been changed. Utilization of renewable resources including solar, wind, and hydropower together with distributed energy systems could eliminate the dependency on fossil fuel energy sources. In this paper, energy use and supply trends have been studied for the Counties of Västmanland and Södermanland in Sweden in order to develop a scenario for the regional energy system in 2030. The aim is to use the scenario for evaluation of the impacts of regional renewable energy resources on the production planning of CHP plants. The scenario shows that there is not enough potential for electricity production from renewable resources such as solar, wind, and hydropower to fulfill the estimated demand in 2030. Around 75% of electricity needs in Västmanland and 89% of power demands in Södermanland need to be met by imported electricity to these regions. Efficiency improvements and a more complex energy system integrating also with other energy resources like biomass, waste and industrial waste heat are necessary to develop a sustainable energy system.

  • 8.
    Daraei, Mahsa
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Potential biofuel production in a fossil fuel free transportation system: A scenario for the County of Västmanland in Sweden2019In: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, p. 1330-1336Conference paper (Refereed)
    Abstract [en]

    Air pollution and increased CO2 concentration in atmosphere and other energy related issues caused a transformative shift in energy system which contributes to increased utilization of renewables as alternative to generate green energy carriers. The potential of renewable resources in different region and potential energy conversion have been largely considered by many researcher in many countries. The energy conversion technologies to produce heat, electricity, and transportation fuels have made impressive technical advances. Sweden has also been challenging with mitigation of CO2 emission and trying to shift into a fossil fuel free system in all energy sectors. This paper deals with the current status of fuel demand and supply in the transport sector in a County in Sweden. A scenario for a fossil fuel free transport sector at a regional level is developed to investigate the potential biofuel production from regionally produced straw. The results and analysis indicate that the potential for cereal based bioethanol production in the region is sufficient to meet the biofuel demand of the County. Using the fallow land for cereal cultivation, it is feasible to shift into a fossil fuel free transportation system where all passenger cars are fueled by bioethanol. The results and finding from the current paper will be used to develop further study on optimization of local biofuel production integrated with CHP plants considering application of other feedstock such as municipal wastes.

  • 9.
    Daraei, Mahsa
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Potentials for increased application of renewables in the transportation system: A case study for Södermanland County, Sweden2019In: Energy Procedia, Elsevier Ltd , 2019, p. 267-273Conference paper (Refereed)
    Abstract [en]

    In this study, possible alternations in a regional transport sector are assessed to increase the use of renewable resources. Three scenarios are developed aimed to investigate different alternatives including potential straw-based bioethanol supply to fuel regional cars with combustion engines, more use of Electrical Vehicles (EVs) with use of potential power from solar energy, and the feasibility of application of hybrid cars fueled with electricity and bioethanol. The evaluation considers the reduction in CO 2 emissions and increased balance in energy demand and supply. Results of the study indicate that application of hybrid vehicles with bioethanol-fueled engines and electrical motors could potentially reduce the CO 2 emissions compared with other proposed approaches in the studied scenarios. At the same time, there would be a balance in the system, so that, the bioethanol production from the available cereal straw in the region can meet the energy demand of suggested hybrid cars in wintertime. While, the energy supply from solar cells installed on the rooftop of the buildings can cover the electricity need of the motor during summer. This approach will also result in increased use of renewables in the transportation system.

  • 10.
    Djuric Ilic, D.
    et al.
    Linköping University.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Trygg, L.
    Linköping University.
    Broman, G.
    Blekinge Institute of Technology,.
    Integration of biofuel production into district heating - Part I: An evaluation of biofuel production costs using four types of biofuel production plants as case studies2014In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 69, p. 176-187Article in journal (Refereed)
    Abstract [en]

    This paper evaluates the effects on profitability of biofuel production if biofuel producers would sell the waste heat from the production to a local district heating system. All analyses have been performed considering four different technology cases for biofuel production. Two technology cases include ethanol production which is followed by by-production of raw biogas. This biogas can be upgraded and sold as biofuel (the first technology case) or directly used for combined heat and power production (the second technology case). The third and the fourth technology cases are Fischer-Tropsch diesel and dimethyl ether production plants based on biomass gasification. Two different district heating price levels and two different future energy market scenarios were considered. The sensitivity analyses of the discount rate were performed as well. In the case of energy market conditions, the profitability depends above all on the price ratio between biomass (used as the feedstock for biofuel production) and crude oil (used as the feedstock for fossil diesel and gasoline production). The reason for this is that the gate biofuel prices (the prices on which the biofuel would be sold) were calculated assuming that the final prices at the filling stations are the same as the prices of the replaced fossil fuel. The price ratios between biomass and district heating, and between biomass and electricity, also have an influence on the profitability, since higher district heating and electricity prices lead to higher revenues from the heat/electricity by-produced. Due to high biofuel (ethanol + biogas) efficiency, the ethanol production plant which produces upgraded biogas has the lowest biofuel production costs. Those costs would be lower than the biofuel gate prices even if the support for transportation fuel produced from renewable energy sources were not included. If the raw biogas that is by-produced would instead be used directly for combined heat and power production, the revenues from the electricity and heat would increase, but at the same time the biofuel efficiency would be lower, which would lead to higher production costs. On the other hand, due to the fact that it has the highest heat efficiency compared to the other technologies, the ethanol production in this plant shows a high sensitivity to the district heating price level, and the economic benefit from introducing such a plant into a district heating system is most obvious. Assuming a low discount rate (6%), the introduction of such a plant into a district heating system would lead to between 28% and 52% (depending on the district heating price level and energy market scenario) lower biofuel production costs. Due to the lower revenues from the heat and electricity co-produced, and higher capital investments compared to the ethanol production plants, Fischer-Tropsch diesel and dimethyl ether productions are shown to be profitable only if high support for transportation fuel produced from renewable energy sources is included. The results also show that an increase of the discount rate from 6% to 10% does not have a significant influence on the biofuel production costs. Depending on the biofuel production plant, and on the energy market and district heating conditions, when the discount rate increases from 6% to 10%, the biofuel production costs increase within a range from 2.2% to 6.8%. 

  • 11.
    Djuric Ilic, D.
    et al.
    Linköping University.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Trygg, L.
    Linköping University.
    Broman, G.
    Blekinge Institute of Technology.
    Integration of biofuel production into district heating - Part II: An evaluation of the district heating production costs using Stockholm as a case study2014In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 69, p. 188-198Article in journal (Refereed)
    Abstract [en]

    Biofuel production through polygeneration with heat as one of the by-products implies a possibility for cooperation between transport and district heating sectors by introducing large-scale biofuel production into district heating systems. The cooperation may have effects on both the biofuel production costs and the district heating production costs. This paper is the second part of the study that investigates those effects. The biofuel production costs evaluation, considering heat and electricity as by-products, was performed in the first part of the study. In this second part of the study, an evaluation of how such cooperation would influence the district heating production costs using Stockholm's district heating system as a case study was performed. The plants introduced in the district heating system were chosen depending on the future development of the transport sector. In order to perform sensitivity analyses of different energy market conditions, two energy market scenarios were applied. Despite the higher revenues from the sale of by-products, due to the capital intense investments required, the introduction of large-scale biofuel production into the district heating system does not guarantee economic benefits. Profitability is highly dependent on the types of biofuel production plants and energy market scenarios. The results show that large-scale biogas and ethanol production may lead to a significant reduction in the district heating production costs in both energy market scenarios, especially if support for transportation fuel produced from renewable energy sources is included. If the total biomass capacity of the biofuel production plants introduced into the district heating system is 900 MW, the district heating production costs would be negative and the whole public transport sector and more than 50% of the private cars in the region could be run on the ethanol and biogas produced. The profitability is shown to be lower if the raw biogas that is by-produced in the biofuel production plants is used for combined and power production instead of being sold as transportation fuel; however, this strategy may still result in profitability if the support for transportation fuel produced from renewable energy sources is included. Investments in Fischer-Tropsch diesel and dimethyl ether production are competitive to the investments in combined and power production only if high support for transportation fuel produced from renewable energy sources is included. 

  • 12.
    Djuric Ilic, D.
    et al.
    Linköping University.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Trygg, L.
    Linköping University.
    Broman, G.
    Blekinge Institute of Technology, Karlskrona, Sweden .
    Introduction of large-scale biofuel production in a district heating system - An opportunity for reduction of global greenhouse gas emissions2014In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 64, no 1, p. 552-561Article in journal (Refereed)
    Abstract [en]

    In this study, cooperation between Stockholm's transport and district heating sectors is analysed. The cooperation concerns the integration of biofuel polygeneration production. A MODEST optimisation model framework is used, assuming various energy market and transport sector scenarios for the year 2030. The scenarios with biofuel production and increased biofuel use in the region are compared with reference scenarios where all new plants introduced into the district heating sector are combined heat and power plants, and the share of biofuel used in the transport sector is the same as today. The results show that the cooperation implies an opportunity to reduce fossil fuel consumption in the sectors by between 20% and 65%, depending on energy market conditions and assumed transport sector scenarios. If we consider biomass an unlimited resource, the potential for greenhouse gas emissions reduction is significant. However, considering that biomass is a limited resource, the increase of biomass use in the district heating system may lead to a decrease of biomass use in other energy systems. The potential for reduction of global greenhouse gas emissions is thus highly dependent on the alternative use of biomass. If this alternative is used for co-firing in coal condensing power plants, biomass use in combined heat and power plants would be more desirable than biofuel production through polygeneration. On the other hand, if this alternative is used for traditional biofuel production (without co-production of heat and electricity), the benefits of biofuel production through polygeneration from a greenhouse gas emissions perspective is superior. However, if carbon capture and storage technology is applied on the biofuel polygeneration plants, the introduction of large-scale biofuel production into the district heating system would result in a reduction of global greenhouse gas emissions independent of the assumed alternative use of biomass. 

  • 13.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Greenhouse gas emissions from power generation and consumption in a nordic perspective2010In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 38, no 2, p. 701-704Article in journal (Refereed)
    Abstract [en]

    During the last decade, there has been an intensive debate on-going in Sweden about how power generation and use affect global warming. More precisely, the discussion has considered how electricity shall be assessed from an environmental and climate perspective in different situations. This article gives a critical analysis on the main viewpoints. A number of environmental-impact assessment principles are outlined and critically examined. Concepts like average electricity and marginal electricity are discussed, and Electricity Disclosure as a basis for evaluation is addressed. The impact from Emission Trading and Tradable Green Certificates is also considered. Recommendations to concerned stakeholders are given. The clash points in the Swedish debate are highlighted and thus made available to a broader audience outside Scandinavia.

  • 14.
    Dotzauer, Erik
    Mälardalen University, Department of Public Technology.
    Produktionsplanering av el och värme - Matematiska modeller och metoder2002Report (Other (popular science, discussion, etc.))
  • 15.
    Guziana, Bozena
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Song, Han
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    SCENARIOS FOR WASTE-TO-ENERGY USE - SWEDISH PERSPECTIVE.2011Conference paper (Other academic)
    Abstract [en]

    The use of waste for energy purposes becomes increasingly interesting both with respect to waste management and for the energy systems. The decisions on alternative uses of waste for energy are mainly influenced by different policies, waste management, energy supply and use, as well as technologies. Two important issues, namely, a clear priority of waste prevention in waste management within EU and the growing concern for food losses and food waste at global and at national level, shall be carefully considered and addressed. This paper proposes scenarios for waste to energy systems with focus on Sweden and with a broader EU approach is applied: Biofuels Sweden, Electric vehicles and Bioenergy Europe. As baseline for the scenario development inventory of waste-to-energy related policies and goals on international, national, regional and local level as well as inventory of existing scenarios and reports with future trends is made. A low waste availability level is recommended to be included in sensitivity analysis for scenarios.

  • 16.
    Guziana, Bozena
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Song, Han
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Policy Based Scenarios for Waste-to-Energy Use: Swedish Perspective2014In: Waste and Biomass Valorization, ISSN 1877-2641, Vol. 5, no 4, p. 679-688Article in journal (Refereed)
    Abstract [en]

    The use of waste for energy purposes becomes increasingly interesting with respect to waste management and the energy systems. The decisions on alternative uses of waste for energy are mainly influenced by different policies, waste management, energy supply and use, as well as technologies. Two important issues, namely, a clear priority of waste prevention in waste management within EU and the growing concern for food losses and food waste at global and national level, shall be carefully considered and addressed. This paper proposes policy based scenarios for waste-to-energy systems with a focus on Sweden and with a broader EU approach. As baseline for the scenario development an inventory of waste-to-energy related policies and goals on international, national, regional and local level as well as inventory of existing scenarios and reports with future trends is made. The main substitute for fossil fuels and the possibilities for renewable energy export are basic elements that define scenarios. Biofuels and electricity are identified as main substitutes for the fossil fuels. A low waste availability level is recommended to be included in sensitivity analysis for scenarios. This paper assumes relative decoupling in Low Waste scenario in 2030, and absolute decoupling first in 2050.

  • 17.
    Guziana, Bozena
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Song, Han
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Waste-to-energy in a Polish perspective2012Conference paper (Other academic)
    Abstract [en]

     Energy recovery from waste becomes increasingly interesting both with respect to waste management and for the sustainable energy supply. The REMOWE (Regional Mobilizing of Sustainable Waste-to-Energy Production) project, seeks to facilitate the implementation of sustainable systems for waste-to-energy in the project regions. Based on investigations done within the REMOWE project this paper discusses increased waste-to-energy utilization in Poland with focus on a comparison with the current state in Sweden. There are big differences between Sweden and Poland, and between Lower Silesia Voivodship in Poland and Västmanland County in Sweden. The REMOWE project through its outputs and discussions during meetings support transfer of technology, knowledge and best practice. Procedural justice and early involvement of public can increase social acceptance and successful implementation of projects regarding incineration, biogas production and separate collection of biodegradable waste.

  • 18.
    Han, Song
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Eva, Thorin
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Bozena, Guziana
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Tuomas, Huopana
    University of Eastern Finland.
    Jinyue, Yan
    Mälardalen University, School of Sustainable Development of Society and Technology.
    A dynamic model to optimize a regional energy system with waste and crops as energy resources for greenhouse gases mitigation2012In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 46, no 1, p. 522-532Article in journal (Other academic)
    Abstract [en]

    A dynamic model of a regional energy system has been developed to support sustainable waste treatmentwith greenhouse gases (GHG) mitigation, addressing the possibility for development towardsa regional fossil fuel-free society between 2011 and 2030. The model is based on conventional mixedinteger linear programming (MILP) techniques to minimize the total cost of regional energy systems. TheCO2 emission component in the developed model includes both fossil and biogenic origins whenconsidering waste, fossil fuels and other renewable sources for energy production. A case study for thecounty of Västmanland in central Sweden is performed to demonstrate the applicability of the developedMILP model in five distinct scenarios. The results show significant potential for mitigating CO2 emissionby gradually replacing fossil fuels with different renewable energy sources. The MILP model can be usefulfor providing strategies for treating wastes sustainably and mitigating GHG emissions in a regionalenergy system, which can function as decision bases for formulating GHG reduction policies andassessing the associated economic implications.

  • 19.
    Han, Song
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Jan, Yinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Annual performance analysis and comparison of pellet production integrated with an existing combined heat and power plant2011In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 102, no 10, p. 6317-6325Article in journal (Refereed)
    Abstract [en]

    Three optional pellet production processes integrated with an existing biomass-based CHP plant using different raw materials (wood chips and solid hydrolysis residues) are studied. The year is divided into 12 periods, and the integrated biorefinery systems are modeled and simulated for each period. The annual economic performance of three integrated biorefinery systems is analyzed based on the simulation results. The option of pellet production integrated with the existing CHP plant with the exhaust flue gas and superheated steam as drying mediums has the lowest specific pellet production cost of 105 €/tpellet, the shortest payback time of less than 2 years and the greatest CO2 reduction of the three options. An advantage in common among the three options is a dramatic increase of the total annual power production and significant CO2 reduction in spite of a small decrease of power efficiency.

  • 20.
    Han, Song
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Techno-economic analysis of an integrated biorefinery system for poly-generation of power, heat, pellets and bioethanol2014In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 38, no 5, p. 551-563Article in journal (Refereed)
    Abstract [en]

    Bioethanol is an alternative to fossil fuels in the transportation sector. The use of pellet for heating is also an efficient way to mitigate greenhouse gas emissions. This paper evaluates the techno-economic performance of a biorefinery system in which an existing combined heat and power (CHP) plant is integrated with the production of bioethanol and pellet using straw as feedstock. A two-stage acid hydrolysis process is used for bioethanol production, and two different drying technologies are applied to dry hydrolysis solid residues. A sensitivity analysis is performed on critical parameters such as the bioethanol selling price and feedstock price. The bioethanol production cost is also calculated for two cases with either 10 year or 15 year payback times. The results show that the second case is currently a more feasible economic configuration and reduces production costs by 36.4%-77.3% compared to other types of poly-generation plants that are not integrated into existing CHP plants. 

  • 21.
    Han, Song
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    School of Chemical Science, Royal Institute of Technology, Stockholm, Sweden.
    Techno-economic analysis of an integrated biorefinerysystem for poly-generation of power, heat, pelletand bioethanol2014In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, no 38, p. 551-563Article in journal (Refereed)
    Abstract [en]

    Abstract: Bioethanol is considered an alternative to fossil fuels in the transportation sector. The use of pellets for heating is another efficient way to mitigate greenhouse gas emissions. This paper evaluates the techno-economic performance of a biorefinery system in which an existing combined heat and power plant integrates with the productions of bioethanol and pellets using straw as feedstock. A two-stage acid hydrolysis process for bioethanol production is used, and two different drying technologies are chosen for drying hydrolysis solid residues. A sensitivity analysis on critical parameters, such as the bioethanol selling price and feedstock price, is performed. The bioethanol production cost is also calculated for two cases at the conditions of ten-year and five-year payback time. The results show that the first case is a more feasible economic configuration at present, having an over 30% production cost reduction compared with the conventional cogeneration plants of bioethanol and solid fuel.

  • 22.
    Häggstål, Daniel
    et al.
    Mälardalen University, Department of Mathematics and Physics.
    Kvarnström, Andreas
    Mälardalen University, Department of Mathematics and Physics.
    Dotzauer, Erik
    Mälardalen University, Department of Mathematics and Physics.
    Holmström, Kenneth
    Mälardalen University, Department of Mathematics and Physics.
    Fuel mix optimization of combined heat and power production utilizing a simulation model2004Conference paper (Refereed)
  • 23.
    Ilic, Danica Djuric
    et al.
    Linköping University.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Trygg, Louise
    Linköping University.
    District heating and ethanol production through polygeneration in Stockholm2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 91, no 1, p. 214-221Article in journal (Refereed)
    Abstract [en]

    Ethanol can be produced with little impact on the environment through the use of polygeneration technology. This paper evaluates the potential of integrating a lignocellulosic ethanol plant into a district heating system by case study; the plant has an ethanol capacity of 95MW with biogas, electricity and heat as by-products. Stockholm's district heating system is used as the case study, but the results may be relevant also for other urban areas. The system has been studied using MODEST - an optimisation model framework. The results show that introducing the plant would lead to a significant reduction in the cost of heat production. The income from the biofuels and electricity produced would be about €76million and €130million annually, respectively, which is an increase of 70% compared to the income from the electricity produced in the system today. Assuming that the electricity produced will replace marginal electricity on the European electricity market and that the biofuel produced will replace gasoline in the transport sector, the introduction of the polygeneration plant in the district heating system would lead to a reduction of global CO2 emissions of about 0.7million tonnes annually

  • 24.
    Johannes, Schmidt
    et al.
    Doctoral School Sustainable Development, University of Natural Resources and Applied Life Sciences, Peter Jordan StraBe 82,.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Kindermann, Georg
    International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.
    Schmid, Erwin
    Institute for Sustainable Economic Development, University of Natural Resources and Applied Life Sciences, FeistmantelstraBe 4,.
    Potential of biomass-fired combined heat and power plants considering the spatial distribution of biomass supply and heat demand2010In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 34, no 11, p. 970-985Article in journal (Refereed)
    Abstract [en]

    Combined heat and power (CHP) plants fired by forest wood can significantly contribute to attaining the target of increasingthe share of renewable energy production. However, the spatial distribution of biomass supply and of heat demand limits thepotentials of CHP production. This article assesses CHP potentials using a mixed integer programming model that optimizeslocations of bioenergy plants. Investment costs of district heating infrastructure are modeled as a function of heat demanddensities, which can differ substantially. Gasification of biomass in a combined cycle process is assumed as productiontechnology. Some model parameters have a broad range according to a literature review. Monte-Carlo simulations havetherefore been performed to account for model parameter uncertainty in our analysis. The model is applied to assess CHPpotentials in Austria. Optimal locations of plants are clustered around big cities in the east of the country. At current powerprices, biomass-based CHP production allows producing around 3% of the total energy demand in Austria. Yet, the heatutilization decreases when CHP production increases due to limited heat demand that is suitable for district heating.Production potentials are most sensitive to biomass costs and power prices.

  • 25.
    Karlsson, C
    et al.
    Mälardalen University, Department of Public Technology.
    Dahlquist, Erik
    Mälardalen University, Department of Public Technology.
    Dotzauer, Erik
    Mälardalen University, Department of Public Technology.
    Data Reconciliation and Gross Error Detaction for Flue Gas Train in Heat and Power Plant, USAManuscript (Other academic)
  • 26.
    Karlsson, C
    et al.
    Mälardalen University, Department of Public Technology.
    Dotzauer, Erik
    Gross Error Isolation by Optimisation with Penalty FunctionIn: Computers and Chemical EngineeringArticle in journal (Refereed)
  • 27.
    Karlsson, Christer
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Kvarnström, Andreas
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dahlquist, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Estimation of process model parameters and process measurements – a heat exchanger example2006In: Conference Proceedings New Trends in Automation, 2006Conference paper (Refereed)
  • 28. Kvarnström, Johan
    et al.
    Liljedahl, Jakob
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Forward temperatures and production planning in district heating systems2006In: The 10th International Symposium on District Heating and Cooling, 2006Conference paper (Refereed)
  • 29.
    Leduc, S.
    et al.
    International Institute for Applied System Analysis (IIASA), A-2361 Laxenburg, Austria;b.Division of Energy Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
    Lundgren, J.
    International Institute for Applied System Analysis (IIASA), A-2361 Laxenburg, Austria;b.Division of Energy Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
    Franklin, O.
    International Institute for Applied System Analysis (IIASA), A-2361 Laxenburg, Austria.
    Dotzauer, E.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Location of a biomass based methanol production plant: A dynamic problem in northern Sweden2010In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 87, no 1, p. 68-75Article in journal (Refereed)
    Abstract [en]

    Concerning production and use of biofuels, mismatch between the locations of feedstock and the biofuel consumer may lead to high transportation costs and negative environmental impact. In order to minimize these consequences, it is important to locate the production plant at an appropriate location. In this paper, a case study of the county of Norrbotten in northern Sweden is presented with the purpose to illustrate how an optimization model could be used to assess a proper location for a biomass based methanol production plant. The production of lignocellulosic based methanol via gasification has been chosen, as methanol seems to be one promising alternative to replace fossil gasoline as an automotive fuel and Norrbotten has abundant resources of woody biomass. If methanol would be produced in a stand-alone production plant in the county, the cost for transportation of the feedstock as well as the produced methanol would have great impact on the final cost depending on where the methanol plant is located. Three different production plant sizes have been considered in the study, 100, 200 and 400 MW (biomass fuel input), respectively. When assessing a proper location for this kind of plant, it is important to also consider the future motor fuel demand as well as to identify a heat sink for the residual heat. In this study, four different automotive fuel- and district heating demand scenarios have been created until the year 2025. The results show that methanol can be produced at a maximum cost of 0.48 €/l without heat sales. By selling the residual heat as district heating, the methanol production cost per liter fuel may decrease by up to 10% when the plant is located close to an area with high annual heat demand.

  • 30.
    Leduc, S.
    et al.
    International Institute for Applied System Analysis, Laxenburg, Austria.
    Wetterlund, E.
    Linköping University.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kindermann, G.
    International Institute for Applied System Analysis, Laxenburg, Austria.
    CHP or biofuel production in Europe?2012In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 20, p. 40-49Article in journal (Refereed)
    Abstract [en]

    In this study, the opportunity to invest in combined heat and power (CHP) plants and second-generation biofuel production plants in Europe is investigated. To determine the number and type of production plants, a mixed integer linear model is used, based on minimization of the total cost of the whole supply chain. Different policy scenarios are studied with varying values of carbon cost and biofuel support. The study focuses on the type of technology to invest in and the CO2 emission substitution potential, at constant energy prices. The CHP plants and the biofuel production plants are competing for the same feedstock (forest biomass), which is available in limited quantities. The results show that CHP plants are preferred over biofuel production plants at high carbon costs (over 50 EUR/tCO2) and low biofuel support (below 10 EUR/GJ), whereas more biofuel production plants would be set up at high biofuel support (over 15 EUR/GJ), irrespective of the carbon cost. Regarding the CO2 emission substitution potential, the highest potential can be reached at a high carbon cost and low biofuel support. It is concluded that there is a potential conflict of interest between policies promoting increased use of biofuels, and policies aiming at decreased CO 2 emissions.

  • 31.
    Leduc, Sylvain
    et al.
    a.International Institute for Applied System Analysis (IIASA), A-2361 Laxenburg, Austria;b.Division of Energy Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden.
    Natarajan, Karthikeyan
    International Institute for Applied System Analysis (IIASA), A-2361 Laxenburg, Austria.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    McCallum, Ian
    International Institute for Applied System Analysis (IIASA), A-2361 Laxenburg, Austria.
    Obersteiner, Michael
    International Institute for Applied System Analysis (IIASA), A-2361 Laxenburg, Austria.
    Optimizing biodiesel production in India2009In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 86, no 1, p. S125-S131Article in journal (Refereed)
    Abstract [en]

    India is expected to at least double its fuel consumption in the transportation sector by 2030. To contributeto the fuel supply, renewable energies such as jatropha appear to be an attractive resource for biodieselproduction in India as it can be grown on waste land and does not need intensive water supply. In orderto produce biodiesel at a competitive cost, the biodiesel supply chain – from biomass harvesting to biodieseldelivery to the consumers – is analyzed. A mixed integer linear programming model is used in order todetermine the optimal number and geographic locations of biodiesel plants. The optimization is based onminimization of the costs of the supply chain with respect to the biomass, production and transportationcosts. Three biodiesel blends are considered, B2, B5 and B10. For each blend, 13 scenarios are consideredwhere yield, biomass cost, cake price, glycerol price, transport cost and investment costs are studied. A sensitivityanalysis is carried out on both those parameters and the resulting locations of the plants. The emissionsof the supply chain are also considered. The results state that the biomass cost has most influence onthe biodiesel cost (an increase of feedstock cost increases the biodiesel cost by about 40%) and to a lowereffect, the investment cost and the glycerol price. Moreover, choosing the right set of production plant locationshighly depends on the scenarios that have the highest probability to occur, for which the productionplant locations still produce a competitive biodiesel cost and emissions from the transportation are minimum.In this study, one set of plant locations happened to meet these two requirements

  • 32. Leduc, Sylvain
    et al.
    Schwab, Dagmar
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Schmid, Erwin
    Obersteiner, Michael
    Optimal location of wood gasification plants for methanol production with heat recovery2008In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 32, no 12, p. 1080-1091Article in journal (Refereed)
    Abstract [en]

    Second generation biofuels from wood gasification are thought to become competitive in the face of effective climate and energy security policies. Cost competitiveness crucially depends on the optimization of the entire supply chain-field-wheel involving optimal location, scaling and logistics. In this study, a linear mixed integer programming model has been developed to determine the optimal geographic locations and sizes of methanol plants and gas stations in Austria. Optimal locations and sizes are found by the minimization of costs with respect to biomass and methanol production and transport, investments for the production plants and the gas stations. Hence, the model covers competition in all levels of a biofuel production chain including supply of biomass, biofuel and heat, and demand for bio- and fossil fuels. The results show that Austria could be self-sufficient in the production of methanol for biofuels like M5, M10 or M20, using up to 8% of the arable land share. The plants are optimally located close to the potential supply of biomass (i.e. poplar) in Eastern Austria, and produce methanol around 0.4 is an element of(-1). Moreover, heat production could lower the methanol cost by 12%.

  • 33. Leduc, Sylvain
    et al.
    Schwab, Dagmar
    Dotzauer, Erik
    Mälardalen University, Department of Public Technology.
    Schmid, Erwin
    Obersteiner, Michael
    Optimal location of wood gasification plants under poly-production2007In: The 3rd International Green Energy Conference, 2007Conference paper (Other academic)
  • 34. Leduc, Sylvain
    et al.
    Schwab, Dagmar
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Schmid, Erwin
    Obersteiner, Michael
    OPTIMAL LOCATION OF WOOD GASIFICATION PLANTS UNDER POLY-PRODUCTION2007Conference paper (Refereed)
  • 35. Leduc, Sylvain
    et al.
    Starfelt, Fredrik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Kinderman, Georg
    McCallum, Ian
    Obersteiner, Mickael
    Lundgren, Joachim
    Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden2010In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 35, no 6, p. 2709-2716Article in journal (Refereed)
    Abstract [en]

    The integration of ethanol production with combined heat and power plants is considered in this paper. An energy balance process model has been used to generate data for the production of ethanol, electricity, heat and biogas. The geographical position of such plants becomes of importance when using local biomass and delivering transportation fuel and heat. An optimization model has thus been used to determine the optimal locations for such plants in Sweden. The entire energy supply and demand chain from biomass outtake to gas stations filling is included in the optimization. Input parameters have been studied for their influence on both the final ethanol cost and the optimal locations of the plants. The results show that the biomass cost, biomass availability and district heating price are crucial for the positioning of the plant and the ethanol to be competitive against imported ethanol. The optimal location to set up polygeneration plants is demonstrated to be in areas where the biomass cost is competitive and in the vicinity of small to medium size cities. Carbon tax does not influence the ethanol cost, but solicits the production of ethanol in Sweden, and changes thus the geography of the plant locations.

  • 36.
    Lerche Raadal, Hanne
    et al.
    Ostfold Res.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Hanssen, Ole Jørgen
    Ostfold Res.
    Kildal, Hans Petter
    Bergen Energi.
    The interaction between Electricity Disclosure and Tradable Green Certificates2012In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 42, p. 419-428Article in journal (Refereed)
    Abstract [en]

    Guarantees of Origin (GO) and Electricity Disclosure, as defined in the EU's Renewable Energy and Electricity Market Directives, require that European consumers should be provided with reliable information about the origin of their electricity supply. At the same time, the Renewable Energy Directive requires that support mechanisms be implemented with the aim of increasing the proportion of energy from renewable sources. The Quota System with Tradable Green Certificates (TGC) was established in Sweden as a support mechanism in 2003 and is, from 2012, planned to be extended to become a Swedish-Norwegian system. This article discusses the effects of Electricity Disclosure and the TGC system when working as two separate entities, and the potential interaction between the systems when working in tandem. It appears that Electricity Disclosure may create a customer-driven demand for renewable electricity, which can supplement the TGC system. In the long-term, GOs may thus influence the decisions made by investors in renewable energy. However, currently Electricity Disclosure has very low, or no, impact on the total production of electricity from renewable sources when compared with a stand-alone TGC system.

  • 37.
    Natarajan, K.
    et al.
    University of Eastern Finland .
    Leduc, S.
    International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria .
    Pelkonen, P.
    University of Eastern Finland.
    Tomppo, E.
    Finnish Forest Research Institute (METLA), Vantaa, Finland.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Optimal locations for second generation Fischer Tropsch biodiesel production in Finland2014In: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 62, p. 319-330Article in journal (Refereed)
    Abstract [en]

    A country level spatially explicit mixed integer linear programming model has been applied to identify the optimal Fischer Tropsch biodiesel production plants locations in Finland. The optimal plant locations with least cost options are identified by minimizing the complete costs of the supply chain with respect to feedstock supply (energywood, pulpwood, sawmill residuals, wood imports), industrial competition (pulp mill, sawmill, combined heat and power plants, pellet industries) and energy demand (biodiesel, heat, biofuel import). Model results show that five biodiesel production plants of 390MWfeedstock are needed to be built to meet the 2020 renewable energy target in transport (25.2PJ). Given current market conditions, the Fischer Tropsch biodiesel can be produced at a cost around 18€/GJ including by-products income. Furthermore, the parameter sensitivity analysis shows that the production plant parameters such as investment costs and conversion efficiency are found to have profound influence on the biodiesel cost, and then followed by feedstock cost and plant size. In addition, the variations in feedstock costs and industrial competition determine the proportion of feedstock resource allocation to the production plants. The results of this study could help decision makers to strategically locate the FT-biodiesel production plants in Finland.

  • 38.
    Natarajan, Karthikeyan
    et al.
    University of Eastern Finland.
    Leduc, Sylvain
    International Institute for Applied System Analysis (IIASA), Laxenburg.
    Pelkonen, Paavo
    Tomppo, Erkki
    Finnish Forest Research Institute (METLA), Vantaa.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Optimal Locations for Methanol and CHP Production in Eastern Finland2012In: Bioenergy Research, ISSN 1939-1234, Vol. 5, no 2, p. 412-423Article in journal (Refereed)
    Abstract [en]

    Finland considers energy production from woody biomass as an efficient energy planning strategy to increase the domestic renewable energy production in order to substitute fossil fuel consumption and reduce greenhouse gas emissions. Consequently, a number of developmental activities are implemented in the country, and one of them is the installation of second generation liquid biofuel demonstration plants. In this study, two gasification-based biomass conversion technologies, methanol and combined heat and power (CHP) production, are assessed for commercialization. Spatial information on forest resources, sawmill residues, existing biomass-based industries, energy demand regions, possible plant locations, and a transport network of Eastern Finland is fed into a geographically explicit Mixed Integer Programming model to minimize the costs of the entire supply chain which includes the biomass supply, biomass and biofuel transportation, biomass conversion, energy distribution, and emissions. The model generates a solution by determining the optimal number, locations, and technology mix of bioenergy production plants. Scenarios were created with a focus on biomass and energy demand, plant characteristics, and cost variations. The model results state that the biomass supply and high energy demand are found to have a profound influence on the potential bioenergy production plant locations. The results show that methanol can be produced in Eastern Finland under current market conditions at an average cost of 0.22 €/l with heat sales (0.34 €/l without heat sales). The introduction of energy policy tools, like cost for carbon, showed a significant influence on the choice of technology and CO 2 emission reductions. The results revealed that the methanol technology was preferred over the CHP technology at higher carbon dioxide cost (>145 €/t CO2). The results indicate that two methanol plants (360 MW biomass) are needed to be built to meet the transport fuel demand of Eastern Finland

  • 39.
    Papahristodoulou, Christos
    et al.
    Mälardalen University, School of Business.
    Dotzauer, Erik
    Mälardalen University, Department of Mathematics and Physics.
    Optimal portfolios using Linear Programming Models2004In: Journal of the Operational Research Society, ISSN 0160-5682, Vol. 55, no 11, p. 1169-1177Article in journal (Refereed)
    Abstract [en]

    The classical Quadratic Programming (QP) formulation of the well-known portfolio selection problem has traditionally been regarded as cumbersome and time consuming. This paper formulates two additional models, (i) maximin, and (ii) minimization of mean absolute deviation. Data from 67 securities over 48 months are used to examine to what extent all three formulations provide similar portfolios. As expected, the maximin formulation yields the highest return and risk, while the QP formulation provides the lowest risk and return, which also creates the efficient frontier. The minimization of mean absolute deviation is close to the QP formulation. When the expected returns are confronted with the true ones at the end of a six months period, the maximin portfolios seem to be the most robust of all.

  • 40.
    Patrizio, P.
    et al.
    University of Udine, Udine, Italy.
    Leduc, S.
    International Institute for Applied Systems Analysis, Laxenburg, Austria.
    Chinese, D.
    University of Udine, Udine, Italy.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kraxner, F.
    International Institute for Applied Systems Analysis, Laxenburg, Austria.
    Biomethane as transport fuel - A comparison with other biogas utilization pathways in northern Italy2015In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 157, p. 25-34Article in journal (Refereed)
    Abstract [en]

    Italy is a large producer of biogas from anaerobic digestion, which is mainly used for power generation with limited use of cogenerated heat. Other utilization pathways, such as biomethane injection into the natural gas grid or biomethane used as a vehicle fuel, remain unexplored. Given the dense grid of natural gas pipelines and existing Compressed Natural Gas (CNG) refueling stations in northern Italy, significant market opportunities for biogas could also arise in the heating and transport sectors. The main objectives of this paper are to explore the potential role of agricultural biogas in different utilization pathways. Biogas combustion for simultaneous production of heat and power in small Combined Heat and Power (CHP) facilities is also assessed, as is upgrading to biomethane for transport or natural gas grid injection in the specific context of northern Italy. The spatially explicit optimization model BeWhere is used to identify optimal locations where greenfield biogas plants could be installed and to determine the most economic and environmentally beneficial mix of conversion technologies and plant capacities. Carbon price, for instance in the form of tradable emission permits, is assessed as a policy instrument and compared with other options such as price premiums on biomethane or electricity costs. Results show that starting from a carbon price of 15EUR/tCO<inf>2</inf>, the cogeneration option is preferable if plants are located in the proximity of existing district heating infrastructure. CNG plants are only competitive starting at a carbon price of 70EUR/tCO<inf>2</inf> in areas with high feedstock availability. The sensitivity analysis for energy prices reveals that a larger number of CNG facilities are included in the optimal mix at higher gas wholesale prices. This further indicates that specific premiums are needed to expand the biomethane market share, while greenhouse gas emission reductions would primarily be achieved by fostering cogeneration of electricity and heat supported by carbon price-based policy instruments.

  • 41.
    Patrizio, Piera
    et al.
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria..
    Leduc, Sylvain
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria..
    Kraxner, Florian
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria..
    Fuss, Sabine
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria.;Mercator Res Inst Global Commons & Climate Change, Working Grp Sustainable Resource Management & Glo, Torgauer Str 12-15, D-10829 Berlin, Germany..
    Kindermann, Georg
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria..
    Mesfun, Sennai
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria..
    Spokas, Kasparas
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria.;Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA..
    Mendoza, Alma
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria..
    Mac Dowell, Niall
    Imperial Coll London, Ctr Environm Policy, London SW7 1NE, England.;Imperial Coll London, Ctr Proc Syst Engn, London SW7 1NA, England..
    Wetterlund, Elisabeth
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria.;Lulea Univ Technol, Div Energy Sci, Energy Engn, S-97187 Lulea, Sweden..
    Lundgren, Joakim
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria.;Lulea Univ Technol, Div Energy Sci, Energy Engn, S-97187 Lulea, Sweden..
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yowargana, Ping
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria..
    Obersteiner, Michael
    IIASA, Ecosyst Serv & Management Program ESM, Schlosspl 1, A-2361 Laxenburg, Austria..
    Reducing US Coal Emissions Can Boost Employment2018In: JOULE, ISSN 2542-4351, Vol. 2, no 12, p. 2633-2648Article in journal (Refereed)
    Abstract [en]

    Concerns have been voiced that implementing climate change mitigation measures could come at the cost of employment, especially in the context of the US coal sector. However, repurposing US coal plants presents an opportunity to address emission mitigation and job creation, if the right technology change is adopted. In this study, the transformation of the US coal sector until 2050 is modeled to achieve ambitious climate targets. Results show that the costoptimal strategy for meeting 2050 emission reductions consistent with 2 degrees C stabilization pathways is through the early deployment of BECCS and by replacing 50% of aging coal plants with natural gas plants. This strategy addresses the concerns surrounding employment for coal workers by retaining 40,000 jobs, and creating 22,000 additional jobs by mid-century. Climate change mitigation does not have to come at the cost of employment, and policymakers could seek to take advantage of the social co-benefits of mitigation.

  • 42. Schmidt, Johannes
    et al.
    Leduc, Sylvain
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Kindermann, Georg
    Schmid, Erwin
    Biofuel Production in Austria Considering the Use of Waste Heat: a Study on Costs and Potentials of Greenhouse Gas Reduction2009In: Jahrbuch der Österreichischen Gesellschaft für Agrarökonomie, ISSN 1815-1027, Vol. 18, no 3, p. 107-116Article in journal (Refereed)
    Abstract [en]

    Die Biotreibstoffproduktion mit Technologien der zweiten Generationverspricht geringere Treibhausgasemissionen im Vergleich zu Technologiender ersten Generation. Die Kosten, Emissionen und optimaleStandorte von Biomassekraftwerken, die diese neuen Technologienverwenden, werden mit Hilfe eines linearen Integer- Optimierungsmodellsfür Österreich abgeschätzt. Holz aus der Forstproduktion undvon Kurzumtriebsanlagen geht als biogener Rohstoff in das Modell ein.Einnahmen durch den Verkauf der Nebenprodukte Wärme, Strom undBiogas, die in der Treibstoffproduktion entstehen, werden ebenfallsberücksichtigt. Die Modellresultate zeigen, dass der Ausstoß vonTreibhausgasemissionen in Österreich durch den Einsatz von Biotreibstoffenum 2%-3,5% verringert werden kann. Allerdings ist nur dieFermentierungstechnologie in der Lage, Treibstoffe zu konkurrenzfähigenKosten zu produzieren, weil höhere Erlöse durch den Verkaufder Nebenprodukte erzielt werden können.

  • 43. Schmidt, Johannes
    et al.
    Leduc, Sylvain
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Kindermann, Georg
    Schmid, Erwin
    Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies2010In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 87, no 7, p. 2128-2141Article in journal (Refereed)
    Abstract [en]

    Bioenergy is regarded as cost-effective option to reduce CO2 emissions from fossil fuel combustion. Among newly developed biomass conversion technologies are biomass integrated gas combined cycle plants (BIGCC) as well as ethanol and methanol production based on woody biomass feedstock. Further-more, bioenergy systems with carbon capture and storage (BECS) may allow negative CO2 emissions in the future. It is still not clear which woody biomass conversion technology reduces fossil CO2 emissions at least costs. This article presents a spatial explicit optimization model that assesses new biomass conversion technologies for fuel, heat and power production and compares them with woody pellets for heat production in Austria. The spatial distributions of biomass supply and energy demand have significant impact on the total supply costs of alternative bioenergy systems and are therefore included in the modeling process. Many model parameters that describe new bioenergy technologies are uncertain, because some of the technologies are not commercially developed yet. Monte-Carlo simulations are used to analyze model parameter uncertainty. Model results show that heat production with pellets is to be preferred over BIGCC at low carbon prices while BECS is cost-effective to reduce CO2 emissions at higher carbon prices. Fuel production - methanol as well as ethanol - reduces less CO2 emissions and is therefore less cost-effective in reducing CO2 emissions.

  • 44.
    Schmidt, Johannes
    et al.
    Doctoral School Sustainable Development, University of Natural Resources and Applied Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria.
    Leduc, Sylvain
    International Institute for Applied System Analysis (IIASA), A-2361 Laxenburg, Austria.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Kindermann, Georg
    International Institute for Applied System Analysis (IIASA), A-2361 Laxenburg, Austria.
    Schmid, Erwin
    Institute for Sustainable Economic Development, University of Natural Resources and Applied Life Sciences, Feistmantelstraße 4, A-1180 Vienna, Austria.
    Potentials for biomass fired combined heat and power plants considering the spatial distribution of biomass supply and heat demand: an Austrian case study2009Conference paper (Refereed)
    Abstract [en]

    Combined Heat and Power (CHP) plants fired by forest wood can significantly contribute toattaining the target of increasing the share of renewable energy production. However, the spatialdistribution of biomass supply and of heat demand limit the potentials of CHP production. Thispaper assesses CHP potentials using a mixed integer programming model that optimizes locationsof bioenergy plants. Investment costs of district heating infrastructure are modeled as a functionof heat demand densities, which can differ substantially. Gasification of biomass in a combinedcycle process is assumed as production technology. Some model parameters have a broad rangeaccording to a literature review. Monte-Carlo simulations have therefore been performed toaccount for model parameter uncertainty in our analysis. The model is applied to assess CHPpotentials in Austria. Optimal locations of plants are clustered around big cities in the East of the country. At current power prices, biomass based CHP production allows producing around 3% ofthe total energy demand in Austria. Yet, the heat utilization decreases when CHP productionincreases due to limited heat demand that is suitable for district heating. Production potentials aremost sensitive to power prices, biomass costs and biomass availability.

  • 45.
    Schmidt, Johannes
    et al.
    Univ Nat Resources & Life Sci, Austria.
    Leduc, Sylvain
    Int Inst Appl Syst Anal, Austria.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Schmid, Erwin
    Univ Nat Resources & Life Sci, Austria.
    Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria2011In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 39, no 6, p. 3261-3280Article in journal (Refereed)
    Abstract [en]

    Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets

  • 46.
    Song, Han
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Nordlander, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Modeling and optimization of a regional waste-to-energy system: A case study in central Sweden2013In: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 33, no 5, p. 1315-1316Article in journal (Other academic)
  • 47.
    Starfelt, Fredrik
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinuye
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Increased renewable electricity production in combined heat and power plants by introducing ethanol production2009Conference paper (Refereed)
    Abstract [en]

    The development towards high energy efficiency and low environmental impact by humaninteractions, has led to a change in many levels of society. Due to the introduction of penalties oncarbon dioxide emissions and other economic instruments, the energy industry is striving towardsenergy efficiency improvement and climate mitigation by switching from fossil to renewablefuels. Biomass-based combined heat and power (CHP) plants connected to district heatingnetworks have a need to find uses for excess heat to produce electricity during summer when theheat demand is low. On the other hand, the transport sector is contributing substantially to theincreased CO2 emissions, which have to be reduced. One promising alternative to address the twochallenging issues is the integration of vehicle fuel production with biomass based CHP plants. Inthis paper, the configuration and operation profits in terms of electricity, heat and ethanol fuelfrom cellulosic biomass are presented. A case study of a commercial small-scale CHP plant hasbeen carried out using simulation and modeling tools. The results clearly show that electricityproduction can be increased when CHP production is integrated with cellulosic ethanolproduction. The findings presented also show that the economical benefits of the energy systemcan be realized with near-term commercially available technology

  • 48.
    Starfelt, Fredrik
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Daianova, Lilia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    The impact of lignocellulosic ethanol yields in polygeneration with district heating: A case study2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 92, p. 791-799Article in journal (Refereed)
    Abstract [en]

    The development towards high energy efficiency and low environmental impact from human interactions

    has led to changes at many levels of society. As a result of the introduction of penalties on carbon

    dioxide emissions and other economic instruments, the energy industry is striving to improve energy

    efficiency and climate mitigation by switching from fossil fuels to renewable fuels. Biomass-based combined

    heat and power (CHP) plants connected to district heating networks have a need to find uses for the

    excess heat they produce in summer when the heat demand is low. On the other hand, the transport sector

    makes a substantial contribution to the increasing CO

    2

    emissions, which have to be reduced. One

    promising alternative to address these challenging issues is the integration of vehicle fuel production

    with biomass-based CHP plants. This paper presents the configuration and operating profits in terms

    of electricity, heat and ethanol fuel from cellulosic biomass. A case study of a commercial small scale

    CHP plant was conducted using simulation and modeling tools. The results clearly show that electricity

    production can be increased when CHP production is integrated with cellulosic ethanol production. The

    findings also show that the economic benefits of the energy system can be realized with near-term commercially

    available technology, and that the benefits do not rely solely on ethanol yields.

  • 49.
    Starfelt, Fredrik
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Thorin, Eva
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dotzauer, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Performance evaluation of adding ethanol production into an existing combined heat and power plant2010In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 101, no 2, p. 613-618Article in journal (Refereed)
    Abstract [en]

    In this paper, the configuration and performance of a polygeneration system are studied by modelling the integration of a lignocellulosic wood-to-ethanol process with an existing combined heat and power (CHP) plant. Data from actual plants are applied to validate the simulation models. The integrated polygeneration system reaches a total efficiency of 50%, meeting the heating load in the district heating system. Excess heat from the ethanol production plant supplies 7.9MWto the district heating system, accounting for 17.5% of the heat supply at full heating load. The simulation results show that the production of ethanol from woody biomass is more efficient when integrated with a CHP plant compared to a stand-alone production plant. The total biomass consumption is reduced by 13.9% while producing the same amounts of heat, electricity and ethanol fuel as in the stand-alone configurations. The results showed that another feature of the integrated polygeneration system is the longer annual operating period compared to existing cogeneration. Thus, the renewable electricity production is increased by 2.7% per year.

  • 50.
    Starfelt, Fredrik
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Tomas Aparicio, Elena
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Integration of torrefaction in CHP plants - A case study2015In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 90, p. 427-435Article in journal (Refereed)
    Abstract [en]

    Torrefied biomass shows characteristics that resemble those of coal. Therefore, torrefied biomass can be co-combusted with coal in existing coal mills and burners. This paper presents simulation results of a case study where a torrefaction reactor was integrated in an existing combined heat and power plant and sized to replace 25%, 50%, 75% or 100% of the fossil coal in one of the boilers. The simulations show that a torrefaction reactor can be integrated with existing plants without compromising heat or electricity production. Economic and sensitivity analysis show that the additional cost for integrating a torrefaction reactor is low which means that with an emission allowance cost of 37 €/ton CO2, the proposed integrated system can be profitable and use 100% renewable fuels. The development of subsidies will affect the process economy. The determinant parameters are electricity and fuel prices.

12 1 - 50 of 66
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf