https://www.mdu.se/

mdu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Giacomossi, L.
    et al.
    Autonomous Computational Systems Lab (LAB-SCA), Aeronautics Institute of Technology (ITA), São José Dos Campos, Brazil.
    Maximo, M. R. O. A.
    Autonomous Computational Systems Lab (LAB-SCA), Aeronautics Institute of Technology (ITA), São José Dos Campos, Brazil.
    Sundelius, Nils
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Funk, Peter
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Brancalion, J. F. B.
    Technological Development Department, EMBRAER S.A, São José Dos Campos, Brazil.
    Sohlberg, Rickard
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Cooperative Search and Rescue with Drone Swarm2024In: Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH , 2024, p. 381-393Conference paper (Refereed)
    Abstract [en]

    Unmanned Aerial Vehicle (UAV) swarms, also known as drone swarms, have been a subject of extensive research due to their potential to enhance monitoring, surveillance, and search missions. Coordinating several drones flying simultaneously presents a challenge in increasing their level of automation and intelligence to improve strategic organization. To address this challenge, we propose a solution that uses hill climbing, potential fields, and search strategies in conjunction with a probability map to coordinate a UAV swarm. The UAVs are autonomous and equipped with distributed intelligence to facilitate a cooperative search application. Our results show the effectiveness of the swarm, indicating that this approach is a promising approach to addressing this problem.

  • 2.
    Sundelius, Nils
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Funk, Peter
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Sohlberg, Rickard
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Simulation Environment Evaluating AI Algorithms for Search Missions Using Drone Swarms2024In: Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH , 2024, p. 191-204Conference paper (Refereed)
    Abstract [en]

    Search missions for objects are relevant in both industrial and civilian context, such as searching for a missing child in a forest or to locating equipment in a building or large factory. To send out a drone swarm to quickly locate a misplaced item in a factory, a missing machine on a building site or a missing child in a forest is very similar. Image-based Machine Learning algorithms are now so powerful that they can be trained to identify objects with high accuracy in real time. The next challenge is to perform the search as efficiently as possible, using as little time and energy as possible. If we have information about the area to search, we can use heuristic and probabilistic methods to perform an efficient search. In this paper, we present a case study where we developed a method and approach to evaluate different search algorithms enabling the selection of the most suitable, i.e., most efficient search algorithm for the task at hand. A couple of probabilistic and heuristic search methods were implemented for testing purposes, and they are the following: Bayesian Search together with a Hill Climbing search algorithm and Bayesian Search together with an A-star search algorithm. A swarm adapted lawn mower search strategy is also implemented. In our case study, we see that the performance of the search heavily depends on the area to search in and domain knowledge, e.g., knowledge about how a child is expected to move through a forest area when lost. In our tests, we see that there are significant gains to be made by selecting a search algorithm suitable for the search context at hand.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf