https://www.mdu.se/

mdu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Henriksson, Johannes
    et al.
    Mälardalen University, School of Innovation, Design and Engineering.
    Magnusson, Alexander
    Mälardalen University, School of Innovation, Design and Engineering.
    Impact of using cloud-based SDNcontrollers on the networkperformance2019Independent thesis Basic level (university diploma), 180 HE creditsStudent thesis
    Abstract [en]

    Software-Defined Networking (SDN) is a network architecture that differs from traditionalnetwork planes. SDN has tree layers: infrastructure, controller, and application. Thegoal of SDN is to simplify management of larger networks by centralizing control into thecontroller layer instead of having it in the infrastructure. Given the known advantages ofSDN networks, and the flexibility of cloud computing. We are interested if this combinationof SDN and cloud services affects network performance, and what affect the cloud providersphysical location have on the network performance. These points are important whenSDN becomes more popular in enterprise networks. This seems like a logical next step inSDN, centralizing branch networks into one cloud-based SDN controller. These questionswere created with a literature studies and answered with an experimentation method. Theexperiments consist of two network topologies both locally hosted SDN (baseline) and cloudhosted SDN. The topology used Zodiac FX switches and Linux hosts. The following metricswas measured: throughput, latency, jitter, packet loss, and time to add new hosts. Theconclusion is that SDN as a cloud service is possible and does not significantly affect networkperformance. One limitation with this thesis was the hardware, resulting in big fluctuationin throughput and packet loss.

    Download full text (pdf)
    fulltext
  • 2.
    Magnusson, Alexander
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Pantzar, David
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Integrating 5G Components into a TSN Discrete Event Simulation Framework2021Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    TSN has for many years been the staple of reliable communication over traditional switched Ethernet and, has been used to advance the industrial automation sector. However, TSN is not mobile, which is needed to fully enable Industry 4.0. The development of 5G and its promised URLLC combined with TSN would give both a mobile and reliable heterogeneous network. The 3GPP has suggested different designs for a 5G and TSN integration. This thesis investigates the different proposed integration designs. Besides the integration design, one of the most essential steps towards validity of the integration is to evaluate the TSN-5G networks based on simulation. Currently, this simulation environment is missing. The investigation in this thesis shows that the most exhaustive work had been done on the Logical TSN Bridge design for simulators, such as the ones based on OMNeT++. Capabilities of the simulator itself are also investigated, where aspects such as the lack of a 5G medium and clock synchronization are presented. In this thesis, we implement the 5G-TSN component that results in a translator which sets different 5G channel parameters depending on the Ethernet packet's priority and its corresponding value. To verify the functionality of the translator that is developed within the simulator, it is tested in a use case inspired by the vehicle industry, containing both TSN and 5G devices. Results from the use case indicate that the translation is performed correctly.

    Download full text (pdf)
    fulltext
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf