mdh.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bonner, R.
    et al.
    Mälardalen University, Department of Mathematics and Physics.
    Fedyszak-Koszela, A.
    Learning a real number, rationally2007Report (Other academic)
  • 2.
    Bonner, Richard
    et al.
    Mälardalen University, Department of Mathematics and Physics.
    Fedyszak-Koszela, A.
    When to stop learning?: Bounding the stopping time in the PAC model2001In: Theory of Stochastic Processes, ISSN 0321-3900, Vol. 7, no 23, p. 5-12Article in journal (Refereed)
  • 3.
    Fedyszak-Koszela, Anna
    Mälardalen University, School of Education, Culture and Communication.
    On the optimal stopping time of learning2008Licentiate thesis, comprehensive summary (Other scientific)
    Abstract [en]

     The goal of this thesis is to study the economics of computational learning. Attention is also paid to applications of computational learning models, especially Valiant's so-called `probably approximately correctly' (PAC) learning model, in econometric situations.

    Specifically, an economically reasonable stopping time model of learning is the subject of two attached papers. In the rst paper, Paper A, the economics of PAC learning are considered. It is shown how a general form of the optimal stopping time bounds can be achieved using the PAC convergence rates for a `pessimistic-rational' learner in the most standard binary case of passive supervised PAC model of finite Vapnik-Chervonenkis (VC) dimension.

     

    The second paper, Paper B, states precisely and improves the ideas introduced in Paper A and tests them in a specific and mathematically simple case. Using the maxmin procedure of Gilboa and Schmeidler the bounds for the stopping time are expressed in terms of the largest expected error of recall, and thus, effectively, in terms of the least expected reward. The problem of locating a real number θ by testing whether xi ≤ θ , with xi drawn from an calculated for a range of term rates, sample costs and rewards/penalties from a recall ae included. The standard econometric situations, such as product promotion, market research, credit risk assessment, and bargaining and tenders, where such bounds could be of interest, are pointed. 

    These two papers are the essence of this thesis, and form it togheter with an introduction to the subject of learning.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf