mdh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kanders, Linda
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Purac AB, Sweden.
    Yang, Jing-jing
    IVL Swedish Environmental Research Institute, Sweden.
    Baresel, Christian
    IVL Swedish Environmental Research Institute, Sweden.
    Zambrano, Jesus
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Full-scale comparison of N2O emissions from SBR N/DN operation versus one-stage deammonification MBBR treating reject water: - and optimization with pHset-point2019In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 79, no 8, p. 1616-1625Article in journal (Refereed)
    Abstract [en]

    To be able to fulfill the Paris agreement regarding anthropogenic greenhouse gases, all potential 12 emissions must be mitigated. Wastewater treatment plants should aim to eliminate emissions of the 13 most potent greenhouse gas, nitrous oxide. In this study, these emissions were measured at a full-scale 14 reject water treatment tank during two different operation modes: nitrification/denitrification (N/DN) 15 operating as a sequencing batch reactor (SBR), and deammonification (nitritation/anammox) as a moving 16 bed biofilm reactor (MBBR). Nitrous oxide was measured both in the water phase and in the off-gas. The 17 treatment process emitted significantly less nitrous oxide in deammonification mode 0.14-0.7 %, 18 compared to 10 % of Total Nitrogen in N/DN mode. The decrease can be linked to the change feeding 19 strategy, concentration in nitrite, load of ammonia oxidized, shorter aeration time, no ethanol dosage 20 and the introduction of biofilm. Further, evaluation was done how the operational pH set point 21 influenced the emissions in deammonification mode. Lower concentrations of nitrous oxide was 22 measured in water phase at higher pH (7.5-7.6) than at lower pH (6.6-7.1). This is believed to be mainly 23 because of the lower aeration ratio and increased complete denitrification at the higher pH set point.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf