mdh.sePublications
Change search
Refine search result
1234567 1 - 50 of 1152
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abbaspour Asadollah, Sara
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Bugs and Debugging of Concurrent and Multicore Software2016Licentiate thesis, comprehensive summary (Other academic)
  • 2.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Daniel, Sundmark
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Eldh, S.
    Ericsson AB, Stockholm, Sweden.
    Hansson, Hans
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Concurrency bugs in open source software: a case study2017In: Journal of Internet Services and Applications, ISSN 1867-4828, Vol. 8, no 1, 4Article in journal (Refereed)
    Abstract [en]

    Concurrent programming puts demands on software debugging and testing, as concurrent software may exhibit problems not present in sequential software, e.g., deadlocks and race conditions. In aiming to increase efficiency and effectiveness of debugging and bug-fixing for concurrent software, a deep understanding of concurrency bugs, their frequency and fixing-times would be helpful. Similarly, to design effective tools and techniques for testing and debugging concurrent software, understanding the differences between non-concurrency and concurrency bugs in real-word software would be useful. This paper presents an empirical study focusing on understanding the differences and similarities between concurrency bugs and other bugs, as well as the differences among various concurrency bug types in terms of their severity and their fixing time, and reproducibility. Our basis is a comprehensive analysis of bug reports covering several generations of five open source software projects. The analysis involves a total of 11860 bug reports from the last decade, including 351 reports related to concurrency bugs. We found that concurrency bugs are different from other bugs in terms of their fixing time and severity while they are similar in terms of reproducibility. Our findings shed light on concurrency bugs and could thereby influence future design and development of concurrent software, their debugging and testing, as well as related tools.

  • 3.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Hansson, Hans
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Sundmark, Daniel
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Eldh, Sigrid
    Ericsson AB, Kista, Sweden.
    Towards Classification of Concurrency Bugs Based on Observable Properties2015In: Proceedings - 1st International Workshop on Complex Faults and Failures in Large Software Systems, COUFLESS 2015, 2015, 41-47 p.Conference paper (Refereed)
    Abstract [en]

    In software engineering, classification is a way to find an organized structure of knowledge about objects. Classification serves to investigate the relationship between the items to be classified, and can be used to identify the current gaps in the field. In many cases users are able to order and relate objects by fitting them in a category. This paper presents initial work on a taxonomy for classification of errors (bugs) related to concurrent execution of application level software threads. By classifying concurrency bugs based on their corresponding observable properties, this research aims to examine and structure the state of the art in this field, as well as to provide practitioner support for testing and debugging of concurrent software. We also show how the proposed classification, and the different classes of bugs, relates to the state of the art in the field by providing a mapping of the classification to a number of recently published papers in the software engineering field.

  • 4.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Inam, Rafia
    Ericsson AB, Kista, Sweden.
    Hansson, Hans
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    A Survey on Testing for Cyber Physical System2015In: Testing Software and Systems: 27th IFIP WG 6.1 International Conference, ICTSS 2015, Sharjah and Dubai, United Arab Emirates, November 23-25, 2015, Proceedings, 2015, 194-207 p.Conference paper (Refereed)
    Abstract [en]

    Cyber Physical Systems (CPS) bridge the cyber-world of computing and communications with the physical world and require development of secure and reliable software. It asserts a big challenge not only on testing and verifying the correctness of all physical and cyber components of such big systems, but also on integration of these components. This paper develops a categorization of multiple levels of testing required to test CPS and makes a comparison of these levels with the levels of software testing based on the V-model. It presents a detailed state-of-the-art survey on the testing approaches performed on the CPS. Further, it provides challenges in CPS testing.

  • 5.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Saadatmand, Mehrdad
    SICS Swedish ICT, Västerås, Sweden.
    Eldh, Sigrid
    Ericsson AB, Kista, Sweden.
    Sundmark, Daniel
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Hansson, Hans
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    A Model for Systematic Monitoring and Debugging of Starvation Bugs in Multicore Software2016In: 2016 ASE Workshop on Specification, Comprehension, Testing and Debugging of Concurrent Programs SCTDCP2016, 2016Conference paper (Refereed)
    Abstract [en]

    With the development of multicore hardware, concurrent, parallel and multicore software are becoming increasingly popular. Software companies are spending a huge amount of time and resources to nd and debug the bugs. Among all types of software bugs, concurrency bugs are also important and troublesome. This type of bugs is increasingly becoming an issue particularly due to the growing prevalence of multicore hardware. In this position paper, we propose a model for monitoring and debugging Starvation bugs as a type of concurrency bugs in multicore software. The model is composed into three phases: monitoring, detecting and debugging. The monitoring phase can support detecting phase by storing collected data from the system execution. The detecting phase can support debugging phase by comparing the stored data with starvation bug's properties, and the debugging phase can help in reproducing and removing the Starvation bug from multicore software. Our intention is that our model is the basis for developing tool(s) to enable solving Starvation bugs in software for multicore platforms.

  • 6.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Sundmark, Daniel
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Eldh, Sigrid
    Ericsson AB, Kista, Sweden .
    Hansson, Hans
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Afza, Wasif
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    10 Years of research on debugging concurrent and multicore software: a systematic mapping studyIn: Software quality journal, ISSN 0963-9314, E-ISSN 1573-1367Article in journal (Refereed)
    Abstract [en]

    Debugging – the process of identifying, localizing and fixing bugs – is a key activity in software development. Due to issues such as non-determinism and difficulties of reproducing failures, debugging concurrent software is significantly more challenging than debugging sequential software. A number of methods, models and tools for debugging concurrent and multicore software have been proposed, but the body of work partially lacks a common terminology and a more recent view of the problems to solve. This suggests the need for a classification, and an up-to-date comprehensive overview of the area. 

    This paper presents the results of a systematic mapping study in the field of debugging of concurrent and multicore software in the last decade (2005– 2014). The study is guided by two objectives: (1) to summarize the recent publication trends and (2) to clarify current research gaps in the field.

    Through a multi-stage selection process, we identified 145 relevant papers. Based on these, we summarize the publication trend in the field by showing distribution of publications with respect to year , publication venues , representation of academia and industry , and active research institutes . We also identify research gaps in the field based on attributes such as types of concurrency bugs, types of debugging processes , types of research  and research contributions.

    The main observations from the study are that during the years 2005–2014: (1) there is no focal conference or venue to publish papers in this area, hence a large variety of conferences and journal venues (90) are used to publish relevant papers in this area; (2) in terms of publication contribution, academia was more active in this area than industry; (3) most publications in the field address the data race bug; (4) bug identification is the most common stage of debugging addressed by articles in the period; (5) there are six types of research approaches found, with solution proposals being the most common one; and (6) the published papers essentially focus on four different types of contributions, with ”methods” being the type most common one.

    We can further conclude that there is still quite a number of aspects that are not sufficiently covered in the field, most notably including (1) exploring correction  and fixing bugs  in terms of debugging process; (2) order violation, suspension  and starvation  in terms of concurrency bugs; (3) validation and evaluation research  in the matter of research type; (4) metric  in terms of research contribution. It is clear that the concurrent, parallel and multicore software community needs broader studies in debugging.This systematic mapping study can help direct such efforts.

  • 7.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Sundmark, Daniel
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Eldh, Sigrid
    Ericsson AB, Kista, Sweden.
    Hansson, Hans
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Paul Enoiu, Eduard
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    A Study on Concurrency Bugs in an Open Source Software2016In: IFIP Advances in Information and Communication Technology, vol. 472, 2016, Vol. 472, 16-31 p.Conference paper (Refereed)
    Abstract [en]

    Concurrent programming puts demands on software debugging and testing, as concurrent software may exhibit problems not present in sequential software, e.g., deadlocks and race conditions. In aiming to increase efficiency and effectiveness of debugging and bug-fixing for concurrent software, a deep understanding of concurrency bugs, their frequency and fixingtimes would be helpful. Similarly, to design effective tools and techniques for testing and debugging concurrent software understanding the differences between non-concurrency and concurrency bugs in real-word software would be useful.

  • 8.
    Abbaspour, Sara
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Proposing Combined Approaches to Remove ECG Artifacts from Surface EMG Signals2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Electromyography (EMG) is a tool routinely used for a variety of applications in a very large breadth of disciplines. However, this signal is inevitably contaminated by various artifacts originated from different sources. Electrical activity of heart muscles, electrocardiogram (ECG), is one of sources which affects the EMG signals due to the proximity of the collection sites to the heart and makes its analysis non-reliable. Different methods have been proposed to remove ECG artifacts from surface EMG signals; however, in spite of numerous attempts to eliminate or reduce this artifact, the problem of accurate and effective de-noising of EMG still remains a challenge. In this study common methods such as high pass filter (HPF), gating method, spike clipping, hybrid technique, template subtraction, independent component analysis (ICA), wavelet transform, wavelet-ICA, artificial neural network (ANN), and adaptive noise canceller (ANC) and adaptive neuro-fuzzy inference system (ANFIS) are used to remove ECG artifacts from surface EMG signals and their accuracy and effectiveness is investigated. HPF, gating method and spike clipping are fast; however they remove useful information from EMG signals. Hybrid technique and ANC are time consuming. Template subtraction requires predetermined QRS pattern. Using wavelet transform some artifacts remain in the original signal and part of the desired signal is removed. ICA requires multi-channel signals. Wavelet-ICA approach does not require multi-channel signals; however, it is user-dependent. ANN and ANFIS have good performance, but it is possible to improve their results by combining them with other techniques. For some applications of EMG signals such as rehabilitation, motion control and motion prediction, the quality of EMG signals is very important. Furthermore, the artifact removal methods need to be online and automatic. Hence, efficient methods such as ANN-wavelet, adaptive subtraction and automated wavelet-ICA are proposed to effectively eliminate ECG artifacts from surface EMG signals. To compare the results of the investigated methods and the proposed methods in this study, clean EMG signals from biceps and deltoid muscles and ECG artifacts from pectoralis major muscle are recorded from five healthy subjects to create 10 channels of contaminated EMG signals by adding the recorded ECG artifacts to the clean EMG signals. The artifact removal methods are also applied to the 10 channels of real contaminated EMG signals from pectoralis major muscle of the left side. Evaluation criteria such as signal to noise ratio, relative error, correlation coefficient, elapsed time and power spectrum density are used to evaluate the performance of the proposed methods. It is found that the performance of the proposed ANN-wavelet method is superior to the other methods with a signal to noise ratio, relative error and correlation coefficient of 15.53, 0.01 and 0.98 respectively.

  • 9.
    Abbaspour, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Daniel, Sundmark
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Hansson, Hans
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Runtime Verification for Detecting Suspension Bugs in Multicore and Parallel Software2017In: Proceedings - 10th IEEE International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2017, 2017, 77-80 p.Conference paper (Refereed)
    Abstract [en]

    Multicore hardware development increases the popularity of parallel and multicore software, while testing and debugging the software become more difficult, frustrating and costly. Among all types of software bugs, concurrency bugs are both important and troublesome. This type of bugs is increasingly becoming an issue, particularly due to the growing prevalence of multicore hardware. Suspension-based-locking bug is one type of concurrency bugs. This position paper proposes a model based on runtime verification and reflection technique in the context of multicore and parallel software to monitor and detect suspension-based-locking bugs. The model is not only able to detect faults, but also diagnose and even repair them. The model is composed of four layers: Logging, Monitoring, Suspension Bug Diagnosis and Mitigation. The logging layer will observe the events and save them into a file system. The monitoring layer will detect the presents of bugs in the software. The suspension bug diagnosis will identify Suspension bugs by comparing the captured data with the suspension bug properties. Finally, the mitigation layer will reconfigure the software to mitigate the suspension bugs. A functional architecture of a runtime verification tool is also proposed in this paper. This architecture is based on the proposed model and is comprised of different modules. 

  • 10.
    Abbaspour, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Fallah, Ali
    Amirkabir University of Technology, Tehran, Iran.
    Lindén, Maria
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Gholamhosseini, Hamid
    Auckland University of Technology, Auckland, New Zealand.
    A Novel Approach for Removing ECG Interferences from Surface EMG signals Using a Combined ANFIS and Wavelet2015In: Journal of Electromyography & Kinesiology, ISSN 1050-6411, E-ISSN 1873-5711, Vol. 26, 52-59 p.Article in journal (Refereed)
    Abstract [en]

    In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS-wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97 dB and 0.02 respectively and a significantly higher correlation coefficient (p < 0.05).

  • 11.
    Abbaspour, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Gholamhosseini, H.
    School of Engineering, Auckland University of TechnologyAuckland, New Zealand .
    Linden, Maria
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Evaluation of wavelet based methods in removing motion artifact from ECG signal2015In: IFMBE Proceedings, 2015, 1-4 p.Conference paper (Refereed)
    Abstract [en]

    Accurate recording and precise analysis of the electrocardiogram (ECG) signals are crucial in the pathophysiological study and clinical treatment. These recordings are often corrupted by different artifacts. The aim of this study is to propose two different methods, wavelet transform based on nonlinear thresholding and a combination method using wavelet and independent component analysis (ICA), to remove motion artifact from ECG signals. To evaluate the performance of the proposed methods, the developed techniques are applied to the real and simulated ECG data. The results of this evaluation are presented using quantitative and qualitative criteria. The results show that the proposed methods are able to reduce motion artifacts in ECG signals. Signal to noise ratio (SNR) of the wavelet technique is equal to 13.85. The wavelet-ICA method performed better with SNR of 14.23.

  • 12.
    Abbaspour, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Lindén, Maria
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Gholamhosseini, Hamid
    Auckland University of Technology, New Zealand.
    ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA2015In: Studies in Health Technology and Informatics, Volume 211, 2015, 91-97 p.Conference paper (Refereed)
    Abstract [en]

    This study aims at proposing an efficient method for automated electrocardiography (ECG) artifact removal from surface electromyography (EMG) signals recorded from upper trunk muscles. Wavelet transform is applied to the simulated data set of corrupted surface EMG signals to create multidimensional signal. Afterward, independent component analysis (ICA) is used to separate ECG artifact components from the original EMG signal. Components that correspond to the ECG artifact are then identified by an automated detection algorithm and are subsequently removed using a conventional high pass filter. Finally, the results of the proposed method are compared with wavelet transform, ICA, adaptive filter and empirical mode decomposition-ICA methods. The automated artifact removal method proposed in this study successfully removes the ECG artifacts from EMG signals with a signal to noise ratio value of 9.38 while keeping the distortion of original EMG to a minimum.

  • 13.
    Abdullah, Syed Md Jakaria
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Moghaddami Khalilzad, Nima
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Behnam, Moris
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Towards Implementation of Virtual-Clustered Multiprocessor Scheduling in Linux2013In: Proceedings of the 8th IEEE International Symposium on Industrial Embedded Systems, SIES 2013, 2013, 97-100 p.Conference paper (Refereed)
    Abstract [en]

    Cluster based multiprocessor scheduling can be seen as a hybrid approach combining benefits of both partitioned and global scheduling. Virtual clustering further enhances it by providing dynamic cluster resource allocation and applying hierarchical scheduling techniques. Over the years, the study of virtual cluster scheduling has been limited to theoretical analysis. In this paper, we present our initial ideas about implementing virtual cluster scheduling in Linux. The purpose of this implementation is twofold: (i) we would like to demonstrate the feasibility of its implementation in an operating system, without modifying the kernel source code, (ii) we present practical insights on the overhead of implementing this framework.

  • 14.
    Achuthan, K.
    et al.
    Amrita Center for Cybersecurity Systems and Networks, Kerala, India.
    Ramesh, M. V.
    Amrita Center for International Programs, Kerala, India.
    Punnekkat, Sasikumar
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Raman, R.
    Center for Research in Advanced Technologies for Education, Kerala, India.
    Internationalizing engineering education with phased study programs: India-European experience2015In: Proceedings - Frontiers in Education Conference, FIE, 2015, no FebruaryConference paper (Refereed)
    Abstract [en]

    Most of the critical challenges seen in the past decades have impacted citizens in a global way. Given shrinking resources, educationists find preparing students for the global market place a formidable challenge. Hence exposing students to multi-lateral educational initiatives are critical to their growth, understanding and future contributions. This paper focuses on European Union's Erasmus Mundus programs, involving academic cooperation amongst international universities in engineering programs. A phased undergraduate engineering program with multiple specializations is analyzed within this context. Based on their performance at the end of first phase, selected students were provided opportunities using scholarship to pursue completion of their degree requirements at various European universities. This paper will elaborate the impact of differing pedagogical interventions, language and cultural differences amongst these countries on students in diverse engineering disciplines. The data presented is based on on the feedback analysis from Eramus Mundus students (N=121) that underwent the mobility programs. The findings have given important insights into the structure of the initiative and implications for academia and education policy makers for internationalizing engineering education. These included considering digital interventions such as MOOCs (Massive Open Online Courses) and Virtual Laboratory (VL) initiatives for systemic reorganization of engineering education.

  • 15.
    Addazi, Lorenzo
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Cicchetti, Antonio
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. IS (Embedded Systems).
    Di Rocco, Juri
    University of L’Aquila, Italy.
    Di Ruscio, Davide
    University of L’Aquila, Italy.
    Iovino, Ludovico
    University of L’Aquila, Italy.
    Pierantonio, Alfonso
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. University of L’Aquila, Italy.
    Semantic-based Model Matching with EMFCompare2016In: CEUR Workshop Proceedings (CEUR-WS.org), Saint Malo, France: CEUR-WS , 2016, Vol. 1706, 40-49 p.Conference paper (Refereed)
  • 16.
    Addazi, Lorenzo
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ciccozzi, Federico
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Langer, Philip
    EclipsSource, Austria.
    Posse, Ernesto
    Zeligsoft, Canada.
    Towards Seamless Hybrid Graphical-Textual Modelling for UML and Profiles2017In: Lecture Notes in Computer Science, vol. 10376, Springer, 2017, 20-33 p.Chapter in book (Refereed)
    Abstract [en]

    Domain-specific modelling languages, in particular those described in terms of UML profiles, use graphical notations to maximise human understanding and facilitate communication among stakeholders. Nevertheless, textual notations are preferred for specific purposes, due to the nature of a specific domain, or for personal preference. The mutually exclusive use of graphical or textual modelling is not sufficient for the development of complex systems developed by large heterogeneous teams. We envision a modern modelling framework supporting seamless hybrid graphical and textual modelling. Such a framework would provide several benefits, among which: flexible separation of concerns, multi-view modelling based on multiple notations, convenient text-based editing operations, and text-based model editing outside the modelling environment, and faster modelling activities. In this paper we describe our work towards such a framework for UML and profiles. The uniqueness is that both graphical and textual modelling are done on a common persistent model resource, thus dramatically reducing the need for synchronisation among the two notations.

  • 17.
    Afshar, Sara
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Lock-Based Resource Sharing in Real-Time Multiprocessor Platforms2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Embedded systems are typically resource constrained, i.e., resources such as processors, I/O devices, shared buffers or shared memory can be limited for tasks in the system. Therefore, techniques that enable an efficient usage of such resources are of great importance.

    In the industry, typically large and complex software systems are divided into smaller parts (applications) where each part is developed independently. Migration towards multiprocessor platforms has become inevitable from an industrial perspective. Due to such migration and to efficient use of system resources, these applications eventually may be integrated on a shared multiprocessor platform. In order to facilitate the integration phase of the applications on a shared platform, the timing and resource requirements of each application can be provided in an interface when the application is developed. The system integrator can benefit from such provided information in the interface of each application to ease the integration process. In this thesis, we have provided the resource and timing requirements of each application in their interfaces for applications that may need several processors to be allocated on when they are developed.

    Although many scheduling techniques have been studied for multiprocessor systems, these techniques are usually based on the assumption that tasks are independent, i.e. do not share resources other than the processors. This assumption is typically not true. In this thesis, we provide an extension to such systems to handle sharing of resources other than processor among tasks. Two traditional approaches exist for multiprocessor systems to schedule tasks on processors. A recent scheduling approach for multiprocessors has combined the two traditional approaches and achieved a hybrid more efficient approach compared to the two previous one. Due to the complex nature of this scheduling approach the conventional approaches for resource sharing could not be used straight forwardly. In this thesis, we have modified resource sharing approaches such that they can be used in such hybrid scheduling systems. A second concern is that enabling resource sharing in the systems can cause unpredictable delays and variations in response time of tasks which can degrade system performance. Therefore, it is of great significance to improve the resource handling techniques to reduce the effect of imposed delays caused by resource sharing in a multiprocessor platform. In this thesis we have proposed alternative techniques for resource handling that can improve system performance for special setups.

  • 18.
    Afshar, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Behnam, Moris
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Bril, R. J.
    Technische Universiteit Eindhoven, Eindhoven, Netherlands .
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Flexible spin-lock model for resource sharing in multiprocessor real-time systems2014In: Proc. IEEE Int. Symp. Ind. Embedded Syst., SIES, 2014, 41-51 p.Conference paper (Refereed)
    Abstract [en]

    Various approaches can be utilized upon resource locking for mutually exclusive resource access in multiprocessor platforms. So far two conventional approaches exist for dealing with tasks that are blocked on a global resource in a multi-processor platform. Either the blocked task performs a busy wait, i.e. spins, at the highest priority level until the resource is released, or it is suspended. Although both approaches provide mutually exclusive access to resources, they can introduce long blocking delays to tasks, which may be unacceptable for many industrial applications. In this paper, we propose a general spin-based model for resource sharing in multiprocessor platforms in which the priority of the blocked tasks during spinning can be selected arbitrarily. Moreover, we provide the analysis for two selected spin-lock priorities and we show by means of a general comparison as well as specific examples that these solutions may provide a better performance for higher priority tasks.

  • 19.
    Afshar, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Behnam, Moris
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Bril, Reinder J.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. Technische Universiteit Eindhoven, Eindhoven, Netherlands.
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Resource Sharing Under Global Scheduling with Partial Processor Bandwidth2015In: 2015 10th IEEE International Symposium on Industrial Embedded Systems, SIES 2015 - Proceedings, 2015, 195-206 p.Conference paper (Refereed)
    Abstract [en]

    Resource efficient approaches are of great importance for resource constrained embedded systems. In this paper, we present an approach targeting systems where tasks of a critical application are partitioned on a multi-core platform and by using resource reservation techniques, the remaining bandwidth capacity on each core is utilized for one or a set of non-critical application(s). To provide a resource efficient solution and to exploit the potential parallelism of the extra applications on the multi-core processor, global scheduling is used to schedule the tasks of the non-critical applications. Recently a specific instantiation of such a system has been studied where tasks do not share resources other than the processor. In this paper, we enable semaphore-based resource sharing among tasks within critical and non-critical applications using a suspension-based synchronization protocol. Tasks of non-critical applications have partial access to the processor bandwidth. The paper provides the systems schedulability analysis where blocking due to resource sharing is bounded. Further, we perform experimental evaluations under balanced and unbalanced allocation of tasks of a critical application to cores.

  • 20.
    Afshar, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Behnam, Moris
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Bril, Reinder
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. 0000-0002-1351-9245.
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Resource sharing in a hybrid partitioned/global scheduling framework for multiprocessors2015In: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 2015Conference paper (Refereed)
    Abstract [en]

    For resource-constrained embedded real-time systems, resource-efficient approaches are very important. Such an approach is presented in this paper, targeting systems where a critical application is partitioned on a multi-core platform and the remaining capacity on each core is provided to a noncritical application using resource reservation techniques. To exploit the potential parallelism of the non-critical application, global scheduling is used for its constituent tasks. Previously, we enabled intra-application resource sharing for such a framework, i.e. each application has its own dedicated set of resources. In this paper, we enable inter-application resource sharing, in particular between the critical application and the non-critical application. This effectively enables resource sharing in a hybrid partitioned/global scheduling framework on multiprocessors. For resource sharing, we use a spin-based synchronization protocol. We derive blocking bounds and extend existing schedulability analysis for such a system.

  • 21.
    Afshar, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Behnam, Moris
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    J. Bril, Reinder
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Per Processor Spin-Lock Priority for Partitioned Multiprocessor Real-Time SystemsIn: Leibniz Transactions on Embedded Systems, ISSN 2199-2002Article in journal (Other academic)
    Abstract [en]

    Two traditional approaches exist for a task that is blocked on a global resource; a task either performs a non-preemptive busy wait, i.e., spins, or suspends and releases the processor. Previously, we have shown that both approaches can be viewed as spinning either at the highest priority HP or at the lowest priority on the processor LP, respectively. Based on this view, previously we have generalized a task's blocking behavioral model, as spinning at any arbitrary priority level. In this paper, we focus on a particular class of spin-lock protocols from the introduced flexible spin-lock model where spinning is performed at a priority equal to or higher than the highest local ceiling of the global resources accessed on a processor referred to as CP spin-lock approach. In this paper, we assume that all tasks of a specific processor are spinning on the same priority level. Given this class and assumption, we show that there exists a spin-lock protocol in this range that dominates the classic spin-lock protocol which tasks spin on highest priority level (HP). However we show that this new approach is incomparable with the CP spin-lock approach. Moreover, we show that there may exist an intermediate spin-lock approach between the priority used by CP spin-lock approach and the new introduced spin-lock approach that can make a task set schedulable when those two cannot. We provide an extensive evaluation results comparing the HP, CP and the new proposed approach.

  • 22.
    Afshar, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Behnam, Moris
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    J. Bril, Reinder
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Per Processor Spin-Lock Priority for Partitioned Multiprocessor Real-Time Systems2014Report (Other academic)
    Abstract [en]

    Two traditional approaches exist for a task that is blocked on a global resource; a task either performs a non-preemptive busy wait, i.e., spins, or suspends and releases the processor. Previously, we have shown that both approaches can be viewed as spinning either at the highest priority HP or at the lowest priority on the processor LP, respectively. Based on this view, previously we have generalized a task's blocking behavioral model, as spinning at any arbitrary priority level. In this paper, we focus on a particular class of spin-lock protocols from the introduced flexible spin-lock model where spinning is performed at a priority equal to or higher than the highest local ceiling of the global resources accessed on a processor referred to as CP spin-lock approach. In this paper, we assume that all tasks of a specific processor are spinning on the same priority level. Given this class and assumption, we show that there exists a spin-lock protocol in this range that dominates the classic spin-lock protocol which tasks spin on highest priority level (HP). However we show that this new approach is incomparable with the CP spin-lock approach. Moreover, we show that there may exist an intermediate spin-lock approach between the priority used by CP spin-lock approach and the new introduced spin-lock approach that can make a task set schedulable when those two cannot. We provide an extensive evaluation results comparing the HP, CP and the new proposed approach.

  • 23.
    Afshar, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Behnam, Moris
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Semi-partitioning under a Blocking-Aware Task Allocation2016In: Proceedings - Real-Time Systems Symposium, 2016Conference paper (Refereed)
    Abstract [en]

    Semi-partitioned scheduling is a resource efficient scheduling approach compared to the conventional multiprocessor scheduling approaches in terms of system utilization and migration overhead. Semi-partitioned scheduling can better utilize processor bandwidth compared to the partitioned scheduling while introducing less overhead compared to the global scheduling. Various techniques have been proposed to schedule tasks in a semi-partitioned environment, however, they have used blockingagnostic allocation mechanisms in presence of resource sharing protocols. Since, the allocation mechanism can highly affect the system schedulability, in this paper we provide a blocking-aware allocation mechanism for semi-partitioned scheduling framework under a suspension-based resource sharing protocol. We have applied new heuristics for sorting the tasks in the algorithm that shows improvements upon system schedulability. Finally, we present our preliminary results.

  • 24.
    Afshar, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Khalilzad, Nima
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Behnam, Moris
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Bril, Reinder J.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. Universiteit Eindhoven, Eindhoven, Netherlands.
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Intra-component Resource Sharing on a Virtual Multiprocessor Platform2016In: ACM SIGBED Review: Special Issue on 8th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems, 2016, 31-32 p.Conference paper (Refereed)
    Abstract [en]

    Component-based software development facilitates the development process of large and complex software systems. By the advent of multiprocessors, the independently developed components can be integrated on a multi-core platform to achieve an efficient use of system hardware and a decrease in system power consumption and costs. In this paper, we consider a virtual multiprocessor platform where each component can be dynamically allocated to any set of processors of the platform with a maximum concurrency level. Global-EDF is used for intra-component scheduling. The existing analysis for such systems have assumed that tasks are independent. In this paper, we enable intra-component resource sharing for this platform. We investigate using a spin-based resource sharing protocol with the accompanying analysis that extends the existing analysis for independent tasks. We briefly illustrate and evaluate our initial results with an example.

  • 25.
    Afshar, Sara
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Moghaddami Khalilzad, Nima
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Nemati, Farhang
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. 0000-0001-6132-7945.
    Resource Sharing among Prioritized Real-Time Applications on Multiprocessors2015In: ACM SIGBED Review - Special Issue on the 6th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems Homepage archiveVolume 12 Issue 1, 2015, 46-55 p.Conference paper (Refereed)
    Abstract [en]

    In this paper, we propose a new protocol for handling resource sharing among prioritized real-time applications composed on a multiprocessor platform. We propose an optimal priority assignment algorithm which assigns unique priorities to the applications based on information in their interfaces. We have performed experimental evaluations to compare the proposed protocol (called MSOS-Priority) to the current state of the art locking protocols under multiprocessor partitioned scheduling, i.e., MPCP, MSRP, FMLP, MSOS, and OMLP. The valuations show that MSOS-Priority mostly performs significantly better than alternative approaches.

  • 26.
    Afshar, Sara Zargari
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Behnam, Moris
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    J. Bril, Reinder
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. Technische Universiteit Eindhoven, Eindhoven, Netherlands.
    Nolte, Thomas
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    An optimal spin-lock priority assignment algorithm for real-time multi-core systems2017In: The 23th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications RTCSA'17, 2017, 8046310Conference paper (Refereed)
    Abstract [en]

    Support for exclusive access to shared (global) resources is instrumental in the context of embedded real-time multi-core systems, and mechanisms for achieving such access must be deterministic and efficient. There exist two traditional approaches for multiprocessors when a task requests a global resource that is locked by a task on a remote core: a spin-based approach, i.e. non-preemptive busy waiting for the resource to become available, and a suspension-based approach, i.e. the task relinquishes the processor. A suspension-based approach can be viewed as a spin-based approach where the lowest priority on a core is used during spinning, similar to a non-preemptive spin-based approach where the highest priority on a core is used. By taking such a view, we previously provided a general model for spinning, where any arbitrary priority can be used for spinning, i.e. from the lowest to the highest priority on a core. Targeting partitioned fixed-priority preemptive scheduled multiprocessors and spin-based approaches that use a fixed priority for spinning per core for all tasks, we aim at increasing the schedulability of multiprocessor systems by using the spin-lock priority per core as parameter. In this paper, we present (i) a generalization of the traditional worst-case response-time analysis for non-preemptive spin-based approaches addressing an arbitrary but fixed spin-lock priority per core, (ii) an optimal spin-lock priority assignment (OSPA) algorithm per core, i.e. an algorithm that will find a fixed spin-lock priority per core that will make the system schedulable, whenever such an assignment exists and, (iii) comparative evaluations of the OSPA algorithm with the spin-based and suspension-based approaches where OSPA showed up to 38% improvement compared to both approaches.

  • 27.
    Afzal, Wasif
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. Bahria University, Islamabad, Pakistan.
    Alone, Snehal
    Chalmers University of Technology, Sweden.
    Glocksien, Kerstin
    Chalmers University of Technology, Sweden.
    Torkar, Richard
    Chalmers University of Technology, Sweden.
    Software Test Process Improvement Approaches: A Systematic Literature Review and an Industrial Case Study2016In: Journal of Systems and Software JSS, ISSN 0164-1212, Vol. 111, 1-33 p.Article in journal (Refereed)
    Abstract [en]

    Software test process improvement (STPI) approaches are frameworks that guide software development organizations to improve their software testing process. We have identified existing STPI approaches and their characteristics (such as completeness of development, availability of information and assessment instruments, and domain limitations of the approaches) using a systematic literature review (SLR). Furthermore, two selected approaches (TPI NEXT and TMMi) are evaluated with respect to their content and assessment results in industry. As a result of this study, we have identified 18 STPI approaches and their characteristics. A detailed comparison of the content of TPI NEXT and TMMi is done. We found that many of the STPI approaches do not provide sufficient information or the approaches do not include assessment instruments. This makes it difficult to apply many approaches in industry. Greater similarities were found between TPI NEXT and TMMi and fewer differences. We conclude that numerous STPI approaches are available but not all are generally applicable for industry. One major difference between available approaches is their model representation. Even though the applied approaches generally show strong similarities, differences in the assessment results arise due to their different model representations.

  • 28.
    Afzal, Wasif
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Bruneliere, Hugo
    AtlanMod Team, Inria, France.
    Di Ruscio, Davide
    Univ. of L'Aquila, L'Aquila, Italy.
    Sadovykh, Andrey
    Softeam, France.
    Mazzini, Silvia
    Intecs, Italy.
    Cariou, Eric
    Univ. de Pau et des Pays de l'Adour, Pau, France.
    Truscan, Dragos
    Åbo Akademi Univ., Turku, Finland.
    Cabot, Jordi
    Jordi Cabot ICREA, Barcelona, Spain.
    Field, Daniel
    ATOS, Madrid, Spain.
    Pomante, Luigi
    Univ. of L'Aquila, L'Aquila, Italy.
    Smrz, Pavel
    Brno Univ. of Technol., Brno, Czech Republic.
    The MegaM@Rt2 ECSEL Project: MegaModelling at Runtime — Scalable Model-Based Framework for Continuous Development and Runtime Validation of Complex Systems2017In: The 2017 Euromicro Conference on Digital System Design DSD'17, 2017Conference paper (Refereed)
    Abstract [en]

    A major challenge for the European electronic industry is to enhance productivity while reducing costs and ensuring quality in development, integration and maintenance. Model-Driven Engineering (MDE) principles and techniques have already shown promising capabilities but still need to scale to support real-world scenarios implied by the full deployment and use of complex electronic components and systems. Moreover, maintaining efficient traceability, integration and communication between two fundamental system life-time phases (design time and runtime) is another challenge facing scalability of MDE. This paper presents an overview of the ECSEL project entitled "MegaModelling at runtime -- Scalable model-based framework for continuous development and runtime validation of complex systems" (MegaM@Rt2), whose aim is to address the above mentioned challenges facing MDE. Driven by both large and small industrial enterprises, with the support of research partners and technology providers, MegaM@Rt2 aims to deliver a framework of tools and methods for: 1) system engineering/design & continuous development, 2) related runtime analysis and 3) global model & traceability management, respectively. The diverse industrial use cases (covering domains such as aeronautics, railway, construction and telecommunications) will integrate and apply such a framework that shall demonstrate the validation of the MegaM@Rt2 solution.

  • 29.
    Afzal, Wasif
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ghazi, Nauman
    Blekinge Institute of Technolog.
    Itkonen, Juha
    Aalto University, Espoo, Finland.
    Torkar, Richard
    Chalmers University of Technology.
    Andrews, Anneliese
    University of Denver, USA.
    Bhatti, Khurram
    Blekinge Institute of Technolog.
    An experiment on the effectiveness and efficiency of exploratory testing2015In: Journal of Empirical Software Engineering, ISSN 1382-3256, E-ISSN 1573-7616, Vol. 20, no 3, 844-878 p.Article in journal (Refereed)
    Abstract [en]

    The exploratory testing (ET) approach is commonly applied in industry, but lacks scientific research. The scientific community needs quantitative results on the performance of ET taken from realistic experimental settings. The objective of this paper is to quantify the effectiveness and efficiency of ET vs. testing with documented test cases (test case based testing, TCT). We performed four controlled experiments where a total of 24 practitioners and 46 students performed manual functional testing using ET and TCT. We measured the number of identified defects in the 90-minute testing sessions, the detection difficulty, severity and types of the detected defects, and the number of false defect reports. The results show that ET found a significantly greater number of defects. ET also found significantly more defects of varying levels of difficulty, types and severity levels. However, the two testing approaches did not differ significantly in terms of the number of false defect reports submitted. We conclude that ET was more efficient than TCT in our experiment. ET was also more effective than TCT when detection difficulty, type of defects and severity levels are considered. The two approaches are comparable when it comes to the number of false defect reports submitted.

  • 30.
    Afzal, Wasif
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. Bahria University, Islamabad, Pakistan .
    Torkar, Richard
    Blekinge Institute of Technology, Karlskrona, Sweden; Chalmers University of Technology, Sweden.
    Towards benchmarking feature subset selection methods for software fault prediction2016In: Computational Intelligence and Quantitative Software Engineering / [ed] Witold Pedrycz, Giancarlo Succi and Alberto Sillitti, Springer-Verlag , 2016, 33-58 p.Chapter in book (Other academic)
    Abstract [en]

    Despite the general acceptance that software engineering datasets often contain noisy, irrele- vant or redundant variables, very few benchmark studies of feature subset selection (FSS) methods on real-life data from software projects have been conducted. This paper provides an empirical comparison of state-of-the-art FSS methods: information gain attribute ranking (IG); Relief (RLF); principal com- ponent analysis (PCA); correlation-based feature selection (CFS); consistency-based subset evaluation (CNS); wrapper subset evaluation (WRP); and an evolutionary computation method, genetic program- ming (GP), on five fault prediction datasets from the PROMISE data repository. For all the datasets, the area under the receiver operating characteristic curve—the AUC value averaged over 10-fold cross- validation runs—was calculated for each FSS method-dataset combination before and after FSS. Two diverse learning algorithms, C4.5 and na ??ve Bayes (NB) are used to test the attribute sets given by each FSS method. The results show that although there are no statistically significant differences between the AUC values for the different FSS methods for both C4.5 and NB, a smaller set of FSS methods (IG, RLF, GP) consistently select fewer attributes without degrading classification accuracy. We conclude that in general, FSS is beneficial as it helps improve classification accuracy of NB and C4.5. There is no single best FSS method for all datasets but IG, RLF and GP consistently select fewer attributes without degrading classification accuracy within statistically significant boundaries.

  • 31.
    Ahlberg, Carl
    et al.
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Asplund, Lars
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Campeanu, Gabriel
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ciccozzi, Federico
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ekstrand, Fredrik
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ekström, Mikael
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Feljan, Juraj
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Gustavsson, Andreas
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Sentilles, Séverine
    Mälardalen University, School of Innovation, Design and Engineering. Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Svogor, Ivan
    FOI, University of Zagreb.
    Segerblad, Emil
    The Black Pearl: An Autonomous Underwater Vehicle2013Report (Other academic)
    Abstract [en]

    The Black Pearl is a custom made autonomous underwater vehicle developed at Mälardalen University, Sweden. It is built in a modular fashion, including its mechanics, electronics and software. After a successful participation at the RoboSub competition in 2012 and winning the prize for best craftsmanship, this year we made minor improvements to the hardware, while the focus of the robot's evolution shifted to the software part. In this paper we give an overview of how the Black Pearl is built, both from the hardware and software point of view.

  • 32.
    Ahlberg, Carl
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ekstrand, Fredrik
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ekström, Mikael
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Spampinato, Giacomo
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Asplund, Lars
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    GIMME2 - An embedded system for stereo vision and processing of megapixel images with FPGA-acceleration2015In: 2015 International Conference on ReConFigurable Computing and FPGAs, ReConFig 2015, 2015Conference paper (Refereed)
    Abstract [en]

    This paper presents GIMME2, an embedded stereovision system, designed to be compact, power efficient, cost effective, and high performing in the area of image processing. GIMME2 features two 10 megapixel image sensors and a Xilinx Zynq, which combines FPGA-fabric with a dual-core ARM CPU on a single chip. This enables GIMME2 to process video-rate megapixel image streams at real-time, exploiting the benefits of heterogeneous processing.

  • 33.
    Ahmed, B. S.
    et al.
    Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Manno-Lugano, Switzerland.
    Sahib, M. A.
    Software and Informatics Engineering Department, Engineering College, Salahaddin University - Erbil, Iraq.
    Gambardella, L. M.
    Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Manno-Lugano, Switzerland.
    Afzal, Wasif
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Zamli, K. Z.
    IBM Centre of Excellence, Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia.
    Optimum design of PIλDμ controller for an automatic voltage regulator system using combinatorial test design2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 11, e0166150Article in journal (Refereed)
    Abstract [en]

    Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations). Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO), Proportional-Integral-Derivative (PID) parameter design controller, named as FOPID, for an automatic voltage regulator (AVR) system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly. © 2016 Ahmed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • 34.
    Ahmed, Bestoun
    et al.
    Istituto Dalle Molle di Studi sullIntelligenza Artificiale (IDSIA), Switzerland.
    Gambardella, Luca
    Istituto Dalle Molle di Studi sullIntelligenza Artificiale (IDSIA), Switzerland.
    Afzal, Wasif
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Zamli, Kamal
    University Malaysia Pahang, Gambang, Malaysia.
    Handling Constraints in Combinatorial Interaction Testing in the Presence of Multi Objective Particle Swarm and Multithreading2017In: Information and Software Technology, ISSN 0950-5849, E-ISSN 1873-6025, Vol. 86, no 01, 20-36 p.Article in journal (Refereed)
    Abstract [en]

    Combinatorial strategies have received a lot of attention lately as a result of their diverse applications in areas of research, particularly in software engineering. In its simple form, a combinatorial strategy can reduce several input parameters (configurations) of a system into a small set of these parameters based on their interaction (combination). However, in practice, the input configurations of software systems are subjected to constraints, especially highly configurable systems. To implement this feature within a strategy, many difficulties arise for construction. While there are many combinatorial interaction testing strategies nowadays, few of them support constraints. This paper presents a new strategy, called Octopus to construct a combinatorial interaction test suites with the presence of constraints. The design and algorithms are provided in the paper in detail. The strategy is inspired by the behaviour of octopus to search for the optimal solution using multi-threading mechanism. To overcome the multi judgement criteria for an optimal solution, the multi-objective particle swarm optimisation is used. The strategy and its algorithms are evaluated extensively using different benchmarks and comparisons. The evaluation results showed the efficiency of each algorithm in the strategy. The benchmarking results also showed that Octopus can generate test suites efficiently as compared to state-of-the-art strategies.

  • 35.
    Ahmed, Bestoun
    et al.
    Czech Technical University, Czech Republic.
    Zamli, Kamal
    University Malaysia Pahang, Gambang, Malaysia..
    Afzal, Wasif
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Bures, Miroslav
    Czech Technical University, Czech Republic.
    Constrained Interaction Testing: A Systematic Literature Study2017In: IEEE Access, E-ISSN 2169-3536, IEEE Access, ISSN 2169-3536, Vol. PP, no 99Article, book review (Other academic)
    Abstract [en]

    Interaction testing can be used to effectively detect faults that are otherwise difficult to find by other testing techniques. However, in practice, the input configurations of software systems are subjected to constraints, especially in the case of highly configurable systems. Handling constraints effectively and efficiently in combinatorial interaction testing is a challenging problem. Nevertheless, researchers have attacked this challenge through different techniques, and much progress has been achieved in the past decade. Thus, it is useful to reflect on the current achievements and shortcomings and to identify potential areas of improvements. This paper presents the first comprehensive and systematic literature study to structure and categorize the research contributions for constrained interaction testing. Following the guidelines of conducting a literature study, the relevant data is extracted from a set of 103 research papers belonging to constrained interaction testing. The topics addressed in constrained interaction testing research are classified into four categories of constraint test generation, application, generation & application and model validation studies. The papers within each of these categories are extensively reviewed. Apart from answering several other research questions, this study also discusses the applications of constrained interaction testing in several domains such as software product lines, fault detection & characterization, test selection, security and GUI testing. The study ends with a discussion of limitations, challenges and future work in the area.

  • 36.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    A Personalized Health-Monitoring System for Elderly by Combining Rules and Case-based Reasoning2015In: Studies in Health Technology and Informatics, Volume 21: Proceedings of the 12th International Conference on Wearable Micro and Nano Technologies for Personalized Health, 2–4 June 2015, Västerås, Sweden, 2015, 249-254 p.Conference paper (Refereed)
    Abstract [en]

    Health-monitoring system for elderly in home environment is a promising solution to provide efficient medical services that increasingly interest by the researchers within this area. It is often more challenging when the system is self-served and functioning as personalized provision. This paper proposed a personalized self-served health-monitoring system for elderly in home environment by combining general rules with a case-based reasoning approach. Here, the system generates feedback, recommendation and alarm in a personalized manner based on elderly’s medical information and health parameters such as blood pressure, blood glucose, weight, activity, pulse, etc. A set of general rules has used to classify individual health parameters. The case-based reasoning approach is used to combine all different health parameters, which generates an overall classification of health condition. According to the evaluation result considering 323 cases and k=2 i.e., top 2 most similar retrieved cases, the sensitivity, specificity and overall accuracy are achieved as 90%, 97% and 96% respectively. The preliminary result of the system is acceptable since the feedback; recommendation and alarm messages are personalized and differ from the general messages. Thus, this approach could be possibly adapted for other situations in personalized elderly monitoring.

  • 37.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    An Intelligent Healthcare Service to Monitor Vital Signs in Daily Life – A Case Study on Health-IoT2017In: International Journal of Engineering Research and Applications, ISSN 2248-9622, E-ISSN 2248-9622, Vol. 7, no 3, 43-55 p.Article in journal (Refereed)
    Abstract [en]

    Vital signs monitoring for elderly in daily life environment is a promising concept that efficiently can provide medical services to people at home. However, make the system self-served and functioning as personalized provision makes the challenge even larger. This paper presents a case study on a Health-IoT system where an intelligent healthcare service is developed to monitor vital signs in daily life. Here, a generic Health-IoT framework with a Clinical Decision Support System (CDSS) is presented. The generic framework is mainly focused on the supporting sensors, communication media, secure and safe data communication, cloud-based storage, and remote accesses of the data. The CDSS is used to provide a personalized report on persons’ health condition based on daily basis observation on vital signs. Six participants, from Spain (n=3) and Slovenia (n=3) have been using the proposed healthcare system for eight weeks (e.g. 300+ health measurements) in their home environments to monitor their health. The sensitivity, specificity and overall accuracy of the DSS’s classification are achieved as 90%, 97% and 96% respectively while k=2 i.e., top 2 most similar retrieved cases are considered. The initial user evaluation result demonstrates the feasibility and performance of the implemented system through the proposed framework.

  • 38.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Banaee, Hadi
    Loutfi, Amy
    Rafael-Palou, Xavier
    Intelligent Healthcare Services to Support Health Monitoring of Elderly2014In: International Conference on IoT Technologies for HealthCare HealthyIoT, Rome, Italy, 2014Conference paper (Refereed)
    Abstract [en]

    This paper proposed an approach of intelligent healthcare services to support health monitoring of old people through the project named SAAPHO. Here, definition and architecture of the proposed healthcare services are presented considering six different health parameters such as: 1) physical activity, 2) blood pressure, 3) glucose, 4) medication compliance, 5) pulse monitoring and 6) weight monitoring. The outcome of the proposed services is evaluated in a case study where total 201 subjects from Spain and Slovenia are involved for user requirements analysis considering 1) end users, 2) clinicians, and 3) field study analysis perspectives. The result shows the potentiality and competence of the proposed healthcare services for the users.

  • 39.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. IS (Embedded Systems).
    Big Data Analytics in Health Monitoring at Home2017In: Medicinteknikdagarna 2017 MTD 2017, 2017Conference paper (Refereed)
    Abstract [en]

    This paper proposed a big data analytics approach applied in the projects ESS-H and E-care@home in the context of biomedical and health informatics with the advancement of information fusion, data abstraction, data mining, knowledge discovery, learning, and reasoning [1][2]. Data are collected through the projects, considering both the health parameters, e.g. temperature, bio-impedance, skin conductance, heart sound, blood pressure, pulse, respiration, weight, BMI, BFP, movement, activity, oxygen saturation, blood glucose, heart rate, medication compliance, ECG, EMG, and EEG, and the environmental parameters e.g. force/pressure, infrared (IR), light/luminosity, photoelectric, room-temperature, room-humidity, electrical usage, water usage, RFID localization and accelerometers. They are collected as semi-structured/unstructured, continuous/periodic, digital/paper record, single/multiple patients, once/several-times, etc. and stored in a central could server [5]. Thus, with the help of embedded system, digital technologies, wireless communication, Internet of Things (IoT) and smart sensors, massive quantities of data (so called ‘Big Data’) with value, volume, velocity, variety, veracity and variability are achieved [2]. The data analysis work in the following three steps. In Step1, pre-processing, future extraction and selection are performed based on a combination of statistical, machine learning and signal processing techniques. A novel strategy to fuse the data at feature level and as well as at data level considers a defined fusion mechanism [3]. In Step2, a combination of potential sequences in the learning and search procedure is investigated. Data mining and knowledge discovery, using the refined data from the above for rule extraction and knowledge mining, with support for anomaly detection, pattern recognition and regression are also explored here [4]. In Step3, adaptation of knowledge representation approaches is achieved by combining different artificial intelligence methods [3] [4]. To provide decision support a hybrid approach is applied utilizing different machine learning algorithms, e.g. case-based reasoning, and clustering [4]. The approach offers several data analytics tasks, e.g. information fusion, anomaly detection, rules and knowledge extraction, clustering, pattern identification, correlation analysis, linear regression, logic regression, decision trees, etc. Thus, the approach assist in decision support, early detection of symptoms, context awareness and patient’s health status in a personal environment.

  • 40.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Catalina, Carlos Alberto
    2ITCL Polígono Industrial Villalonquéjar c/López Bravo, 70. 09001 BURGOS, Spain.
    Limonad, Lior
    Smart Wearable and IoT Solutions, IBM Research, Haifa, Israil.
    Hök, Bertil
    Hök Instrument AB, Sweden.
    Flumeri, Gianluca Di
    Cognitive States in Operative Environment, BrainSigns, Italy.
    Cloud-based Data Analytics on Human Factor Measurement to Improve Safer Transport2017In: 4th EAI International Conference on IoT Technologies for HealthCare HealthyIOT'17, 2017Conference paper (Refereed)
    Abstract [en]

    Improving safer transport includes individual and collective behavioural aspects and their interaction. A system that can monitor and evaluate the human cognitive and physical capacities based on human factor measurement is often beneficial to improve safety in driving condition. However, analysis and evaluation of human factor measurement i.e. Demographics, Behavioural and Physiological in real-time is challenging. This paper presents a methodology for cloud-based data analysis, categorization and metrics correlation in real-time through a H2020 project called SimuSafe. Initial implementation of this methodology shows a step-by-step approach which can handle huge amount of data with variation and verity in the cloud.

  • 41.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Kerstis, Birgitta
    Mälardalen University, School of Health, Care and Social Welfare, Health and Welfare.
    Petrovic, Nikola
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Sandborgh, Maria
    Mälardalen University, School of Health, Care and Social Welfare, Health and Welfare.
    Third Eye: An Intelligent Assisting Aid for Visual Impairment Elderly2016In: Medicinteknikdagarna 2016 MTF, 2016Conference paper (Refereed)
    Abstract [en]

    Background Visually impaired older persons need support in daily activities, e.g. moving around inside the house; making and eating food and taking medicine independently. A system that simulates the environment based on both dynamic and static objects, identify obstacles, navigates and translates sensory information in voice would be valuable to support their daily activities. Today several sensors and camera-based systems are popular as ambient-assisted living tools for older adults. However, intelligent assisting aid (IAA) to support older individuals with a recently acquired visual impairment is limited. The proposed system ‘Third Eye’ focuses on the advanced research and development of an IAA to support older individuals with a recently acquired visual impairment. The main goal in this system is to provide a usable, feasible and cost-effective solution for older persons to support their daily activities using intelligent sensor based system. Method The system consists of the following five phases to meet several central challenges in developing IAA in such domain. • User-perspective, focuses on user-driven technical development, investigating needs of potential users. The study will have a participatory design with focus group interviews of lead users. • Sensor-based system, focuses on the identification obstacles based on ultrasounds and/or radio frequencies embedded in white-cane or weaker. • Camera-based system, focuses on image based information translation into voice embedded in white-cane or weaker or glasses. • System of systems, focuses on integration of above systems where knowledge is engineered and suitable representations are learned and reasoning for decisions are made [9]. • Experimental, focuses on usability and feasibility of the IAA, with idiographic and group studies Results The initial results have shown the necessity of the proposed AAI systems for older individuals with a recently acquired visual impairment. However, more extension work e.g., process and analyze the information and synthesize it with existing literature for developing the system is ongoing.

  • 42.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Begum, ShahinaMälardalen University, School of Innovation, Design and Engineering, Embedded Systems.Raad, WasimKing Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
    Internet of Things Technologies for HealthCare: Third International Conference, HealthyIoT 2016, Västerås, Sweden, October 18-19, 2016, Revised Selected Papers2016Conference proceedings (editor) (Other academic)
    Abstract [en]

    This book constitutes the proceedings of the Third International Conference on Internet of Things (IoT) Technologies for HealthCare, HealthyIoT 2016, held in Västerås, Sweden, October 18-19, 2016. The conference also included the First Workshop on Emerging eHealth through Internet of Things (EHIoT 2016). IoT as a set of existing and emerging technologies, notions and services provides many solutions to delivery of electronic healthcare, patient care, and medical data management. The 31 revised full papers presented along with 9 short papers were carefully reviewed and selected from 43 submissions in total. The papers cover topics such as healthcare support for the elderly, real-time monitoring systems, security, safety and communication, smart homes and smart caring environments, intelligent data processing and predictive algorithms in e-Health, emerging eHealth IoT applications, signal processing and analysis, and smartphones as a healthy thing.

  • 43.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Björkman, Mats
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Causevic, Aida
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Fotouhi, Hossein
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Lindén, Maria
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    An Overview on the Internet of Things for Health Monitoring Systems2015In: 2nd EAI International Conference on IoT Technologies for HealthCare HealthyIoT2015, 2015Conference paper (Refereed)
    Abstract [en]

    The aging population and the increasing healthcare cost in hospitals are spurring the advent of remote health monitoring systems. Advances in physiological sensing devices and the emergence of reliable low-power wireless network technologies have enabled the design of remote health monitoring systems. The next generation Internet, commonly referred to as Internet of Things (IoT), depicts a world populated by devices that are able to sense, process and react via the Internet. Thus, we envision health monitoring systems that support Internet connection and use this connectivity to enable better and more reliable services. This paper presents an overview on existing health monitoring systems, considering the IoT vision. We focus on recent trends and the development of health monitoring systems in terms of: (1) health parameters, (2) frameworks, (3) wireless communication, and (4) security issues. We also identify the main limitations, requirements and advantages within these systems.

  • 44.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Björkman, Mats
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Lindén, Maria
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    A Generic System-level Framework for Self-Serve Health Monitoring System through Internet of Things(IoT)2015In: Studies in Health Technology and Informatics, Volume 211: Proceedings of the 12th International Conference on Wearable Micro and Nano Technologies for Personalized Health, 2–4 June 2015, Västerås, Sweden, 2015, Vol. 211, 305-307 p.Conference paper (Refereed)
    Abstract [en]

    Sensor data are traveling from sensors to a remote server, data is analysed remotely in a distributed manner, and health status of a user is presented in real-time. This paper presents a generic system-level framework for a self-served health monitoring system through the Internet of Things (IoT) to facilities an efficient sensor data management.

  • 45.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Fotouhi, Hossein
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Köckemann, Uwe
    Örebro University, Sweden.
    Lindén, Maria
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Tomasic, Ivan
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Tsiftes, Nicolas
    RISE SICS, Stockholm, Sweden.
    Voigt, Thiemo
    RISE SICS, Stockholm, Sweden.
    Run-Time Assurance for the E-care@home System2017In: 4th EAI International Conference on IoT Technologies for HealthCare HealthyIOT'17, 2017Conference paper (Refereed)
    Abstract [en]

    This paper presents the design and implementation of the software for a run-time assurance infrastructure in the E-care@home system. An experimental evaluation is conducted to verify that the run-time assurance infrastructure is functioning correctly, and to enable detecting performance degradation in experimental IoT network deployments within the context of E-care@home.

  • 46.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Lindén, Maria
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Healthcare Service at Home: An Intelligent Health Monitoring System for Elderly2015In: Medicinteknikdagarna 2015 MFT 2015, 2015Conference paper (Refereed)
    Abstract [en]

    This paper presents an intelligent healthcare service to support active ageing by assisting seniors to participate in regular monitoring of elderly’s health condition. The proposed system is applicable to use in home environment and offers a self-service approach to monitor elderly’s health condition. According to the evaluation, the proposed system shows its necessity, competence and usefulness.

  • 47.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Lindén, Maria
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Multi-parameter Sensing Platform in ESS-H and E-care@home2017In: Joint conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC) EMBEC & NBC’17, 2017Conference paper (Refereed)
    Abstract [en]

    Considering the population of ageing, health monitoring of elderly at home have the possibility for a person to keep track on his/her health status, e.g. decreased mobility in a personal environment. This also shows the potential of real-time decision support, early detection of symptoms, following of health trends and context awareness [1]. The ongoing projects Embedded Sensor for Health (ESS-H)1 and E-care@home2 are focusing on health monitoring of elderly at home. This paper presents the implementation of multi-parameter sensing on an Android platform. The objectives are, both to follow health trends and to enabling real time monitoring.

  • 48.
    Aisa, J.
    et al.
    Universidad de Zaragoza, Zaragoza, Spain .
    Fotouhi, Hossein
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Villarroel, J. L.
    Universidad de Zaragoza, Zaragoza, Spain .
    Almeida, L.
    University of Porto, Porto, Portugal.
    Soft real-time traffic communication in loaded Wireless Mesh Networks2016In: IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS, 2016, Article number 7496503Conference paper (Refereed)
    Abstract [en]

    Industrial applications have been shifting towards wireless multi-hop networks in recent years due to their lower cost of deployment and reconfiguration compared with their wired counterparts. These wireless networks usually must support real-time communication to meet the application requirements. For this reason, Wireless Mesh Networks (WMNs) are potential candidates for industrial applications as they support a fixed infrastructure of static nodes for relaying packets. To meet the application demands, we modify the wireless chain network protocol (WICKPro) to support soft real-time traffic in WMNs with chain topologies over IEEE 802.11. We employ tele-operation of mobile robots as our case study, and perform extensive simulation and laboratory experiments. We show that the data delivery ratio is increased up to 42% in a scenario with 7 nodes, when the maximum end-to-end delay tolerated by the application is doubled. This is particularly suited to soft real-time applications that can trade longer delays by higher reliability. Moreover, when compared with a distributed priority-based token-passing protocol (RT-WMP), the lower overhead of WICKPro allows, in an error-free scenario, obtaining a throughput improvement of 33.42% on average.

  • 49.
    Aisa, Jesus
    et al.
    Universidad de Zaragoza, Zaragoza, Spain.
    Fotouhi, Hossein
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Almeida, Luis
    University of Porto, Portugal.
    Villarroel, José Luis
    Universidad de Zaragoza, Zaragoza, Spain.
    DoTHa - A Double-threshold Hand-off Algorithm for Managing Mobility in Wireless Mesh Networks2016In: 21st IEEE Conference on Emerging Technologies and Factory Automation ETFA'16, 2016, 7733511Conference paper (Refereed)
    Abstract [en]

    Wireless communication will play an increasingly important role in future factory automation and process control, where the presence of mobile autonomous devices is expected to grow. However, wireless links are prone to errors due to shadowing and multi-path fading, which is even more severe in dynamic environments. These problems can be attenuated by using a mesh backbone to which mobile node connect to, using a hand-off algorithm. This solution is particularly important under real-time requirements typically found in factory automation. In this paper, we devise the Double-Threshold Hand-off (DoTHa) algorithm, a novel hand-off mechanism that triggers a hand-off in various environmental conditions. As a case study, we carry out the tele-operation of a mobile robot through a wireless mesh network in an indoor setting, using a wireless chain network protocol (WICKPro-SRT) that supports soft real-time traffic. We empirically compared DoTHa with two existing hand-off algorithms based on single and double hysteresis margin. The results revealed that DoTHa achieves Data Delivery Ratio (DDR) close to 100% whereas the single hysteresis-based hand-off suffers from frequent disconnections, dropping DDR to 88%. The double hysteresis-based hand-off shows higher ping-pong effect than DoTHa, doubling the number of hand-offs in some scenarios.

  • 50.
    Akan, Batu
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Planning and Sequencing Through Multimodal Interaction for Robot Programming2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Over the past few decades the use of industrial robots has increased the efficiency as well as the competitiveness of several sectors. Despite this fact, in many cases robot automation investments are considered to be technically challenging. In addition, for most small and medium-sized enterprises (SMEs) this process is associated with high costs. Due to their continuously changing product lines, reprogramming costs are likely to exceed installation costs by a large margin. Furthermore, traditional programming methods of industrial robots are too complex for most technicians or manufacturing engineers, and thus assistance from a robot programming expert is often needed. The hypothesis is that in order to make the use of industrial robots more common within the SME sector, the robots should be reprogrammable by technicians or manufacturing engineers rather than robot programming experts. In this thesis, a novel system for task-level programming is proposed. The user interacts with an industrial robot by giving instructions in a structured natural language and by selecting objects through an augmented reality interface. The proposed system consists of two parts: (i) a multimodal framework that provides a natural language interface for the user to interact in which the framework performs modality fusion and semantic analysis, (ii) a symbolic planner, POPStar, to create a time-efficient plan based on the user's instructions. The ultimate goal of this work in this thesis is to bring robot programming to a stage where it is as easy as working together with a colleague.This thesis mainly addresses two issues. The first issue is a general framework for designing and developing multimodal interfaces. The general framework proposed in this thesis is designed to perform natural language understanding, multimodal integration and semantic analysis with an incremental pipeline. The framework also includes a novel multimodal grammar language, which is used for multimodal presentation and semantic meaning generation. Such a framework helps us to make interaction with a robot easier and more natural. The proposed language architecture makes it possible to manipulate, pick or place objects in a scene through high-level commands. Interaction with simple voice commands and gestures enables the manufacturing engineer to focus on the task itself, rather than the programming issues of the robot. The second issue addressed is due to inherent characteristics of communication with the use of natural language; instructions given by a user are often vague and may require other actions to be taken before the conditions for applying the user's instructions are met. In order to solve this problem a symbolic planner, POPStar, based on a partial order planner (POP) is proposed. The system takes landmarks extracted from user instructions as input, and creates a sequence of actions to operate the robotic cell with minimal makespan. The proposed planner takes advantage of the partial order capabilities of POP to execute actions in parallel and employs a best-first search algorithm to seek the series of actions that lead to a minimal makespan. The proposed planner can also handle robots with multiple grippers, parallel machines as well as scheduling for multiple product types.

1234567 1 - 50 of 1152
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf