https://www.mdu.se/

mdu.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Afzal, Wasif
    et al.
    Blekinge Inst Technol.
    Torkar, Richard
    Blekinge Inst Technol.
    On the application of genetic programming for software engineering predictive modeling: A systematic review2011In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 38, no 9, p. 11984-11997Article in journal (Refereed)
    Abstract [en]

    The objective of this paper is to investigate the evidence for symbolic regression using genetic programming (GP) being an effective method for prediction and estimation in software engineering, when compared with regression/machine learning models and other comparison groups (including comparisons 20 with different improvements over the standard GP algorithm). We performed a systematic review of literature that compared genetic programming models with comparative techniques based on different 22 independent project variables. A total of 23 primary studies were obtained after searching different information sources in the time span 1995–2008. The results of the review show that symbolic regression using genetic programming has been applied in three domains within software engineering predictive modeling: (i) Software quality classification (eight primary studies). (ii) Software cost/effort/size estimation (seven primary studies). (iii) Software fault prediction/software reliability growth modeling (eight primary studies). While there is evidence in support of using genetic programming for software quality classification, software fault prediction and software reliability growth modeling; the results are inconclusive for software cost/effort/size estimation.

  • 2.
    Barua, Shaibal
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ahlström, Christer
    The Swedish National Road and Transport Research Institute (VTI), Linköping, SE, Sweden.
    Begum, Shahina
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Automatic driver sleepiness detection using EEG, EOG and contextual information2019In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 115, p. 121-135Article in journal (Refereed)
    Abstract [en]

    The many vehicle crashes that are caused by driver sleepiness each year advocates the development of automated driver sleepiness detection (ADSD) systems. This study proposes an automatic sleepiness classification scheme designed using data from 30 drivers who repeatedly drove in a high-fidelity driving simulator, both in alert and in sleep deprived conditions. Driver sleepiness classification was performed using four separate classifiers: k-nearest neighbours, support vector machines, case-based reasoning, and random forest, where physiological signals and contextual information were used as sleepiness indicators. The subjective Karolinska sleepiness scale (KSS) was used as target value. An extensive evaluation on multiclass and binary classifications was carried out using 10-fold cross-validation and leave-one-out validation. With 10-fold cross-validation, the support vector machine showed better performance than the other classifiers (79% accuracy for multiclass and 93% accuracy for binary classification). The effect of individual differences was also investigated, showing a 10% increase in accuracy when data from the individual being evaluated was included in the training dataset. Overall, the support vector machine was found to be the most stable classifier. The effect of adding contextual information to the physiological features improved the classification accuracy by 4% in multiclass classification and by and 5% in binary classification.

  • 3.
    Begum, Shahina
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Barua, Shaibal
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Filla, Reno
    Volvo Construction Equipment, Sweden.
    Ahmed, Mobyen Uddin
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. Örebro University, Sweden.
    Classification of physiological signals for wheel loader operators using Multi-scale Entropy analysis and case-based reasoning2014In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 41, no 2, p. 295-305Article in journal (Refereed)
    Abstract [en]

    Sensor signal fusion is becoming increasingly important in many areas including medical diagnosis and classification. Today, clinicians/experts often do the diagnosis of stress, sleepiness and tiredness on the basis of information collected from several physiological sensor signals. Since there are large individual variations when analyzing the sensor measurements and systems with single sensor, they could easily be vulnerable to uncertain noises/interferences in such domain; multiple sensors could provide more robust and reliable decision. Therefore, this paper presents a classification approach i.e. Multivariate Multiscale Entropy Analysis–Case-Based Reasoning (MMSE–CBR) that classifies physiological parameters of wheel loader operators by combining CBR approach with a data level fusion method named Multivariate Multiscale Entropy (MMSE). The MMSE algorithm supports complexity analysis of multivariate biological recordings by aggregating several sensor measurements e.g., Inter-beat-Interval (IBI) and Heart Rate (HR) from Electrocardiogram (ECG), Finger Temperature (FT), Skin Conductance (SC) and Respiration Rate (RR). Here, MMSE has been applied to extract features to formulate a case by fusing a number of physiological signals and the CBR approach is applied to classify the cases by retrieving most similar cases from the case library. Finally, the proposed approach i.e. MMSE–CBR has been evaluated with the data from professional drivers at Volvo Construction Equipment, Sweden. The results demonstrate that the proposed system that fuses information at data level could classify ‘stressed’ and ‘healthy’ subjects 83.33% correctly compare to an expert’s classification. Furthermore, with another data set the achieved accuracy (83.3%) indicates that it could also classify two different conditions ‘adapt’ (training) and ‘sharp’ (real-life driving) for the wheel loader operators. Thus, the new approach of MMSE–CBR could support in classification of operators and may be of interest to researchers developing systems based on information collected from different sensor sources.

  • 4.
    Ebrahimi, Zahra
    et al.
    Shahrood University of Technology, Shahroud, Iran.
    Loni, Mohammad
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Daneshtalab, Masoud
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Ghareh Baghi, Arash
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    A Review on Deep Learning Methods for ECG Arrhythmia Classification2020In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 7, article id 100033Article in journal (Refereed)
    Abstract [en]

    Deep Learning (DL) has recently become a topic of study in different applications including healthcare, in which timely detection of anomalies on Electrocardiogram (ECG) can play a vital role in patient monitoring. This paper presents a comprehensive review study on the recent DL methods applied to the ECG signal for the classification purposes. This study considers various types of the DL methods such as Convolutional Neural Network (CNN), Deep Belief Network (DBN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). From the 75 studies reported within 2017 and 2018, CNN is dominantly observed as the suitable technique for feature extraction, seen in 52% of the studies. DL methods showed high accuracy in correct classification of Atrial Fibrillation (AF) (100%), Supraventricular Ectopic Beats (SVEB) (99.8%), and Ventricular Ectopic Beats (VEB) (99.7%) using the GRU/LSTM, CNN, and LSTM, respectively

  • 5.
    Marling, Cindy
    et al.
    Ohio University, Athens, OH 45701, USA.
    Montani, Stefania
    Università del Piemonte Orientale.
    Bichindaritzc, Isabelle
    State University of New York at Oswego.
    Funk, Peter
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Synergistic case-based reasoning in medical domains2014In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 41, no 2, p. 249-259Article in journal (Refereed)
    Abstract [en]

    This paper presents four synergistic systems that exemplify the approaches and benefits of case-based reasoning in medical domains. It then explores how these systems couple Artificial Intelligence (AI) research with medical research and practice, integrate multiple AI and computing methodologies, leverage small numbers of available cases, reason with time series data, and integrate numeric data with contextual and subjective information. The following systems are presented: (1) CARE-PARTNER, which supports the long-term follow-up care of stem-cell transplantation patients; (2) the 4 Diabetes Support System, which aids in managing patients with type 1 diabetes on insulin pump therapy; (3) Retrieval of HEmodialysis in NEphrological Disorders, which supports hemodialysis treatment of patients with end stage renal disease; and (4) the Mälardalen Stress System, which aids in the diagnosis and treatment of stress-related disorders.

  • 6.
    Rajabi, S.
    et al.
    Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
    Saman Azari, M.
    Department of Computer Science and Media Technology, Linnaeus University, Växjo, Sweden.
    Santini, S.
    Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy.
    Flammini, Francesco
    Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation. Department of Computer Science and Media Technology, Linnaeus University, Växjo, Sweden.
    Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier2022In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 206, article id 117754Article in journal (Refereed)
    Abstract [en]

    Rotating equipment is considered as a key component in several industrial sectors. In fact, the continuous operation of many industrial machines such as sub-sea pumps and gas turbines relies on the correct performance of their rotating equipment. In order to reduce the probability of malfunctions in this equipment, condition monitoring, and fault diagnosis systems are essential. In this work, a novel approach is proposed to perform fault diagnosis in rotating equipment based on permutation entropy, signal processing, and artificial intelligence. To that aim, vibration signals are employed for an indication of bearing performance. In order to facilitate fault diagnosis, fault detection and isolation are performed in two separate steps. As first, once a vibration signal is received, the faulty state of the bearing is determined by permutation entropy. In case a faulty state is detected, the fault type is determined using an approach based on signal processing and artificial intelligence. Wavelet packet transform and envelope analysis of the vibration signals are utilized to extract the frequency components of the fault. The proposed approach allows for the automatic selection of a frequency band that includes the characteristic resonance frequency of the fault, which is subject to change in different operational conditions. The method works by extracting the proper features of the signals that are used to decide about the faulty bearing's condition by a multi-output adaptive neuro-fuzzy inference system classifier. The effectiveness of the approach is assessed by the Case Western Reserve University dataset: the analysis demonstrates the proposed method's capabilities in accurately diagnosing faults in rotating equipment as compared to existing approaches. 

  • 7.
    Xiong, Ning
    Mälardalen University, School of Innovation, Design and Engineering.
    Learning fuzzy rules for similarity assessment in case-based reasoning2011In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 38, no 9, p. 10780-10786Article in journal (Refereed)
    Abstract [en]

    Fundamental to case-based reasoning is the assumption that similar problems have similar solutions. The meaning of the concept of "similarity" can vary in different situations and remains an issue. This paper proposes a novel similarity model consisting of fuzzy rules to represent the semantics and evaluation criteria for similarity. We believe that fuzzy if-then rules present a more powerful and flexible means to capture domain knowledge for utility oriented similarity modeling than traditional similarity measures based on feature weighting. Fuzzy rule-based reasoning is utilized as a case matching mechanism to determine whether and to which extent a known case in the case library is similar to a given problem in query. Further, we explain that such fuzzy rules for similarity assessment can be learned from the case library using genetic algorithms. The key to this is pair-wise comparisons of cases with known solutions in the case library such that sufficient training samples can be derived for genetic-based fuzzy rule learning. The evaluations conducted have shown the superiority of the proposed method in similarity modeling over traditional schemes as well as the feasibility of learning fuzzy similarity rules from a rather small case base while still yielding competent system performance.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf