mdh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Campeanu, Gabriel
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Mubeen, Saad
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Scavenging Run-time Resources to Boost Utilization in Component-based Embedded Systems with GPUs2018In: International Journal On Advances in Software, ISSN 1942-2628, E-ISSN 1942-2628, Vol. 11, no 1, p. 159-169Article in journal (Refereed)
    Abstract [en]

    Many modern embedded systems with GPUs are required to process huge amount of data that is sensed from their environment. However, due to some inherent properties of these systems such as limited energy, computation and storage resources, it is important that the resources should be used in an efficient way. For example, camera sensors of a robot may provide low-resolution frames for positioning itself in an open environment and high-resolution frames to analyze detected objects. In this paper, we introduce a method that, when possible, scavenges the unused resources (i.e., memory and number of GPU computation threads) from the critical functionality and distributes them to the non-critical functionality. As a result, the overall system performance is improved without compromising the critical functionality. The method uses a monitoring solution that checks the utilization of the system resources and triggers their distribution to the non-critical functionality whenever possible. As a proof of concept, we realize the proposed method in a state-of-the-practice component model for embedded systems. As an evaluation, we use an underwater robot case study to evaluate the feasibility of the proposed solution.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf