mdh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mara, Grube
    et al.
    Latvia University, Latvia.
    Olga, Chusova
    Marita, Gavare
    Latvia University, Latvia.
    Karlis, Shvirksts
    Latvia University, Latvia.
    Nehrenheim, Emma
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Odlare, Monica
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Application of FT-IR Spectroscopy for Investigation of Pink Water Remediation by Pine Bark2015In: Open Biotechnology Journal, ISSN 1874-0707, Vol. 9Article in journal (Refereed)
    Abstract [en]

    This study demonstrates the application of FT-IR spectroscopy for investigating the remediation of pink water with the low cost adsorbent pine bark. The removal of 2,4,6-trinitrotoluene (TNT) from pink water by adsorption to pine bark was accompanied by a reduction in intensities of peaks at 1544 and 1347 cm-1 in the spectra of acetonitrile extracts of the pine bark. Hierarchial cluster analysis differentiated samples with high (30-180 mg/L) and low (0-4 mg/L) TNT concentrations, demonstrating the potential of this approach as a quick screening method for the control of the removal of TNT from pink water. The amount of lignin in pine bark was inversely proportional to the size of the pine bark particles, while the concentration of phenolic hydroxyl groups increases with increasing size of pine bark particles. FT-IR spectra showed that as well as TNT, pine bark can also adsorb nitramine explosives such as RDX and HMX.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf