https://www.mdu.se/

mdu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dao, Van-Lan
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Hoang, Le-Nam
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Girs, Svetlana
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Uhlemann, Elisabeth
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Defeating Jamming Using Outage Performance Aware Joint Power Allocation and Access Point Placement in Uplink Pairwise NOMA2021In: IEEE Open Journal of the Communications Society, E-ISSN 2644-125X, Vol. 2, p. 1957-1979Article in journal (Refereed)
    Abstract [en]

    In this paper, an uplink pairwise Non-Orthogonal Multiple Access (NOMA) scenario using a mobile access point (AP) or an unmanned aerial vehicle in the presence of a jamming attack is considered. To mitigate the influence of the jamming attack, a joint power allocation and AP placement design is proposed. Accordingly, closed-form expressions of the overall outage probability (OOP) and the individual outage probability (TOP) considering imperfect channel state information for each of the source nodes the AP serves, are derived over Nakagami-m fading channels using dynamic decoding order and fixed pairwise power allocation. We conduct an investigation of the effect of different parameters such as power allocation, source node placements, AP placement, target rates, and jammer location on the OOP and the IOP performance. By adapting the power allocation and the AP placement to the jamming attack, the communication reliability can be increased significantly compared to neglecting the presence of the jammer or treating the jammer as noise. Since the malicious jammer and the AP have conflicting interests in terms of communication reliability, we formulate a non-cooperative game for the two players considering their positions and the power allocation of the NOMA nodes as their strategies and the OOP as utility function. We propose using hybrid simulated annealing - greedy algorithms to address the joint power allocation and AP placement problem for the cases of both a fixed and a mobile jammer. Finally, the Nash equilibrium points are obtained and then the UAV goes directly to this position and keeps staying there to save power consumption.

  • 2.
    Dao, Van-Lan
    et al.
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Hoang, Le-Nam
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Girs, Svetlana
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Uhlemann, Elisabeth
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    Outage Performance of Pairwise NOMA Allowing a Dynamic Decoding Order and Optimal Pairs of Power Levels2020In: IEEE Open Journal of the Communications Society, E-ISSN 2644-125X, Vol. 1, p. 1886-1906Article in journal (Refereed)
    Abstract [en]

    In this article, we evaluate the overall outage probability (OOP) of pairwise Non-orthogonal Multiple Access (NOMA) for both uplink and downlink. We also propose a dynamic decoding order (DDO) together with a fixed pairwise power allocation (FPPA) scheme, in which the optimal decoding order is decided based on the instantaneous channel gains, and thereafter, a pair of power levels is assigned in accordance with the selected decoding order. Exact closed-form expressions of the OOPs for both uplink and downlink pairwise NOMA considering all proposed decoding orders over Nakagami- m fading are derived. Further, we find the optimal fixed power levels for different power allocation strategies so that the OOPs are minimized. Moreover, we investigate the influence of the distances between the source nodes and the access point (AP), the target transfer rates and the path-loss exponents on the OOPs for all cases of decoding orders. In addition, we benchmark our proposed DDO against other decoding orders in terms of the OOP. The results show that assigning optimal fixed power levels which takes the instantaneous decoding order into account not only improves the communication reliability, but also reduces the complexity and computational load at the AP.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf