mdh.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ditaranto, M.
    et al.
    SINTEF Energy Research, Trondheim, Norway .
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Løvås, T.
    Norwegian University of Science and Technology, Trondheim, Norway .
    Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of combustion and emissions performance2015In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 37, p. 377-383Article in journal (Refereed)
    Abstract [en]

    A novel gas turbine cycle concept applicable to power plants with pre-combustion CO<inf>2</inf> capture or integrated gasification combined cycle (IGCC) is presented. These power plants use a hydrogen rich fuel with high reactive combustion properties which makes fuel dilution necessary to achieve low NOx emissions. The proposed novel gas turbine arrangement is set up as to avoid both fuel dilution and its consequent efficiency penalty, and breakthrough in low NOx combustion technology. In this concept, a high exhaust gas recirculation (EGR) rate is applied in order to generate an oxygen depleted working fluid entering the combustor, enough to reduce the high reactivity of hydrogen rich fuels. As a result, the combustion temperature in this environment is inherently limited, thus, keeping NOx formation rate low. A first order assessment of the combustion characteristics under such gas turbine operating conditions is made in the light of a numerical analysis of stability and NOx emissions potential. Both diffusion and premixed types combustor are considered according to the selected EGR rate. It is first shown that the flame stability could be maintained at EGR rates well above the maximum EGR limit found in conventional natural gas fired gas turbines. The study further shows that at these high EGR rates, considerable reductions in NOx emissions can be expected. The conclusion of this first order analysis is that there is a true potential in reducing the efficiency penalty induced by diluting the fuel in power plants with pre-combustion CO<inf>2</inf> capture. 

  • 2.
    Hu, Y.
    et al.
    Royal Institute of Technology.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering.
    Numerical simulation of radiation intensity of oxy-coal combustion with flue gas recirculation2013In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 17, p. 473-480Article in journal (Refereed)
    Abstract [en]

    Oxy-fuel combustion is one of potential technologies for carbon dioxide (CO2) capture in fossil fuel fired power plants. Characterization of flue gas composition in the oxy-fuel combustion differs from that of conventional air-coal combustion, which results in the change of radiative heat transfer in combustion processes. This paper presents a numerical study of radiation intensity on lateral walls based on the experimental results of a 0.5MW combustion test facility (CTF). Differences in the oxy-coal combustion are analyzed, such as flue gas recycle, absorption coefficient and radiation intensity. The simulation results show that an effective O2 concentration ([O2]effective) between 29 and 33vol% (equivalent to the flue gas recycle ratio of 72-69%) constitutes a reasonable range, within this range the behavior of oxy-coal combustion is similar to air-coal combustion. Compared with the air-coal combustion, the lower limit (29vol%) of this range results in a similar radiative heat flux at the region closed to the burner, but a lower radiative heat flux in the downstream region of the CTF; the upper limit (33vol%) of this range results in a higher radiative heat flux at the region closed to the burner, while a similar radiative heat flux in the downstream region of the CTF

  • 3.
    Li, Hailong
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Wilhelmsen, Øivind
    SINTEF Energy Research.
    Lv, Yuexia
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Wang, Weilong
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures:Review of experimental data and theoretical models2011In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 5, no 5, p. 1119-1139Article in journal (Refereed)
    Abstract [en]

    Accurate experimental data on the thermo-physical properties of CO2-mixtures are pre-requisites fordevelopment of more accurate models and hence, more precise design of CO2 capture and storage (CCS)processes. A literature survey was conducted on both the available experimental data and the theoreticalmodels associated with the transport properties of CO2-mixtures within the operation windows ofCCS. Gaps were identified between the available knowledge and requirements of the system design andoperation. For the experimental gas-phase measurements, there are no available data about any transportproperties of CO2/H2S, CO2/COS and CO2/NH3; and except for CO2/H2O(/NaCl) and CO2/amine/H2Omixtures, there are no available measurements regarding the transport properties of any liquid-phasemixtures. In the prediction of gas-phase viscosities using Chapman–Enskog theory, deviations are typically<2% at atmospheric pressure and moderate temperatures. The deviations increase with increasingtemperatures and pressures. Using both the Rigorous Kinetic Theory (RKT) and empirical models in theprediction of gas-phase thermal conductivities, typical deviations are 2.2–9%. Comparison of popularempirical models for estimation of gas-phase diffusion coefficients with newer experimental data forCO2/H2O shows deviations of up to 20%. For many mixtures relevant for CCS, the diffusion coefficientmodels based on the RKT show predictions within the experimental uncertainty. Typical reported deviationsof the CO2/H2O system using empirical models are below 3% for the viscosity and the thermalconductivity and between 5 and 20% for the diffusion coefficients. The research community knows littleabout the effect of other impurities in liquid CO2 than water, and this is an important area to focus infuture work.

  • 4.
    Li, Hailong
    et al.
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering.
    Feasibility of integrating solar energy into a power plant with amine-based chemical absorption for CO2 capture2012In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 9, p. 272-280Article in journal (Refereed)
    Abstract [en]

    Solar thermal energy has the potential to supply the thermal demand of stripper reboiler in the power plant with amine-based post combustion CO2 capture. The performance of a power plant integrated with solar assisted post combustion CO2 capture (SCC) is largely affected by the local climatic conditions, such as solar irradiation, sunshine hours and ambient temperature, the type of solar thermal collector and CO2 recovery ratio. The feasibility evaluation results about such a power plant show that the cost of electricity (COE) and cost of CO2 avoidance (COA) are mainly determined by the local climatic conditions. For the locations having higher solar irradiation, longer sunshine hours and higher ambient temperature, the power plant with SCC has lower COE and COA. COE and COA are sensitive to the prices of solar thermal collectors. In order to achieve lower COE and COA compared to the power plant integrated with non-solar assisted post combustion capture, the price of solar thermal collector has to be lower than 150 USD/m(2) and 90 USD/m(2) for the solar trough and vacuum tube, respectively.

  • 5.
    Nookuea, Worrada
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Tan, Y.
    School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
    Impacts of thermo-physical properties of gas and liquid phases on design of absorber for CO2 capture using monoethanolamine2016In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 52, p. 190-200Article in journal (Refereed)
    Abstract [en]

    Absorption of CO2 with aqueous amines in post-combustion capture is characterized as a heat and mass transfer processes with chemical reaction, which is sensitively affected by the thermo-physical properties of fluids. In order to optimize the design of the absorber of CO2 capture process, in this paper, the impacts of thermo-physical properties on the column design were investigated. Furthermore, the property impacts on the capital cost of the absorber unit were also identified and analyzed. Results show that the gas phase density has the most significant effect on the column diameter. Underestimation of the gas phase density of 10% may result in an increase of about 6% of the column diameter. For the packing height, the liquid phase density has the most significant effect. 10% underestimation of the liquid phase density may result in an increase of 8% of the packing height. Moreover, the effect from the liquid phase viscosity is also significant. For the annual capital cost, the liquid phase density also shows the most significant effect. Underestimation of the liquid phase density of 10% leads to the cost overestimation of $1.4 million for the absorption column for a 400 MW coal-fired power plant. Therefore, the development of the flue gas density model and liquid phase density and viscosity models of the aqueous amine solution with CO2 loading should be prioritized.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf