mdh.sePublikasjoner
Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Campana, Pietro Elia
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Institute of Technology, Stockholm, Sweden.
    Wästhage, Louise
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Nookuea, Worrada
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Tan, Y.
    Royal Institute of Technology, Stockholm, Sweden.
    Yan, Jinyue
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Royal Institute of Technology, Stockholm, Sweden.
    Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems2019Inngår i: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 177, s. 782-795Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Considering the targets of Thailand in terms of renewable energy exploitation and decarbonization of the shrimp farming sector, this work evaluates several scenarios for optimal integration of hybrid renewable energy systems into a representative shrimp farm. In particular, floating and floating-tracking PV systems are considered as alternatives for the exploitation of solar energy to meet the shrimp farm electricity demand. By developing a dynamic techno-economic simulation and optimization model, the following renewable energy systems have been evaluated: PV and wind based hybrid energy systems, off-grid and on-grid PV based hybrid energy systems, ground mounted and floating PV based hybrid energy systems, and floating and floating-tracking PV based hybrid energy systems. From a water-energy nexus viewpoint, floating PV systems have shown significant impacts on the reduction of evaporation losses, even if the energy savings for water pumping are moderate due to the low hydraulic head. Nevertheless, the study on the synergies between water for food and power production has highlighted that the integration of floating PV represents a key solution for reducing the environmental impacts of shrimp farming. For the selected location, the results have shown that PV systems represent the best renewable solution to be integrated into a hybrid energy system due to the abundance of solar energy resources as compared to the moderate wind resources. The integration of PV systems in off-grid configurations allows to reach high renewable reliabilities up to 40% by reducing the levelized cost of electricity. Higher renewable reliabilities can only be achieved by integrating energy storage solutions but leading to higher levelized cost of electricity. Although the floating-tracking PV systems show higher investment costs as compared to the reference floating PV systems, both solutions show similar competiveness for reliabilities up to 45% due to the higher electricity production of the floating-tracking PV systems. The higher electricity production from the floating-tracking PV systems leads to a better competitiveness for reliabilities higher than 90% due to lower capacity requirements for the storage systems.

  • 2.
    Lennermo, Gunnar
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Energianalys AB, Alingsås, Sweden.
    Lauenburg, P.
    Lund university, Sweden.
    Werner, S.
    Halmstad university, Sweden.
    Control of decentralised solar district heating2019Inngår i: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 179, s. 307-315Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The purpose of decentralised solar district heating plants is to feed solar heat directly into district heating networks. This decentralised heat supply has to consider two major output conditions: a stable required feed-in supply temperature and a feed-in heat power equal to the heat output from the solar collectors. However, many installations cannot achieve the second output condition, since severe oscillations appear in the feed-in heat power. This problem can be solved by two different control concepts with either temperature- or flow-control. Detailed measurements from two reference plants are provided for these two different control concepts. One main conclusion is that a robust control system is characterized by the ability to provide required flows and temperatures. The major difference between robust and less robust control is that the supply temperatures and/or flows do not fluctuate even if the input conditions are unfavourable. 

  • 3.
    Thygesen, Richard
    et al.
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Karlsson, Björn
    Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
    Simulation and analysis of a solar assisted heat pump system with two different storage types for high levels of PV electricity self-consumption2014Inngår i: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 103, nr May 2014, s. 19-27Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The incentives for PV-systems in Europe is being gradually lowered or ended. This makes a higher level of self-consumption interesting for owners of PV-systems.Sweden has an incentive of 35% of the investment cost for PV-systems. Unfortunately not all consumers can get this incentive. Therefore a high level of self-consumption will be necessary if the PV-systems are to be profitable in Sweden.A reference system with two different energy storage technologies is investigated in this paper. One system with 48. kW. h of batteries and one system with a hot water storage tank where the electricity is stored as heat.The research questions in this paper are:. Which storage system gives the highest level of PV electricity self-consumption?Are the storage systems profitable with the assumptions made in this paper?What are the levelized costs of electricity (LCOE) for the reference system with different storage system?The system with batteries has a self-consumption of 89% of the annual PV-electricity output and the system with a hot water storage tank has 88%.The system with batteries has a levelized cost of electricity two times higher than the system with a hot water storage tank.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf