mdh.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bulut, Mehmet Börühan
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Odlare, Monica
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Stigson, Peter
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Vassileva, Iana
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Active buildings in smart grids - Exploring the views of the Swedish energy and buildings sectors2016In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 117, p. 185-198Article in journal (Refereed)
    Abstract [en]

    The development of smart grids is expected to shift the role of buildings in power networks from passive consumers to active players that trade on power markets in real-time and participate in the operation of networks. Although there are several studies that report on consumer views on buildings with smart grid features, there is a gap in the literature about the views of the energy and buildings sectors, two important sectors for the development. This study fills this gap by presenting the views of key stakeholders from the Swedish energy and buildings sectors on the active building concept with the help of interviews and a web survey. The findings indicate that the active building concept is associated more with energy use flexibility than self-generation of electricity. The barriers to development were identified to be primarily financial due to the combination of the current low electricity prices and the high costs of technologies. Business models that reduce the financial burdens and risks related to investments can contribute to the development of smart grid technologies in buildings, which, according to the majority of respondents from the energy and buildings sectors, are to be financed by housing companies and building owners. 

  • 2.
    Bulut, Mehmet Börühan
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Odlare, Monica
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Stigson, Peter
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Vassileva, Iana
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Buildings in the future energy system: Perspectives of the Swedish energy and buildings sectors on current energy challenges2015In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 107, p. 254-263, article id Article number 6090Article, review/survey (Refereed)
    Abstract [en]

    Buildings are expected to play a key role in the development and operation of future smart energy systems through real-time energy trade, energy demand flexibility, self-generation of electricity, and energy storage capabilities. Shifting the role of buildings from passive consumers to active players in the energy networks, however, may require closer cooperation between the energy and buildings sectors than there is today. Based on 23 semi-structured interviews and a web survey answered by key stakeholders, this study presents the views of the energy and buildings sectors on the current energy challenges in a comparative approach. Despite conflicting viewpoints on some of the issues, the energy and buildings sectors have similar perspectives on many of the current energy challenges. Reducing CO2 emissions is a shared concern between the energy and buildings sectors that can serve as a departure point for inter-sectoral cooperation for carbon-reducing developments, including the deployment of smart energy systems. The prominent energy challenges were identified to be related to low flexibilities in energy supply and use, which limit mutually beneficial cases, and hence cooperation, between the energy and buildings sectors today.

  • 3.
    Ma, Z.
    et al.
    Beijing University of Posts and Telecommunications, Beijing, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Sun, Q.
    Shandong University, Jinan, China .
    Wang, C.
    Tongji University, Shanghai, China.
    Yan, A.
    Tianjin Institute of Urban Construction, Tianjin, China .
    Starfelt, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Statistical analysis of energy consumption patterns on the heat demand of buildings in district heating systems2014In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 85, p. 664-672Article in journal (Refereed)
    Abstract [en]

    Precise prediction of heat demand is crucial for optimising district heating (DH) systems. Energy consumption patterns (ECPs) represent a key parameter in developing a good mathematical model to predict heat demand. This study quantitatively investigated the impacts of ECPs on heat consumption. Two key factors, namely, time and type of buildings, were used to reflect various ECPs in DH systems, and a Gaussian mixture model (GMM) was developed to examine their impacts on heat consumption. The model was trained and validated using the measured data from a real DH system. Results show that the factor of time does not represent a good reflection of ECP. In contrast, categorising buildings according to their function is an effective way to reflect ECPs. Based on the defined building types, i.e., commercial, apartment and office, the average absolute deviation of the predicted heat load was about 4-8%.

  • 4.
    Swing Gustafsson, Moa
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Energy Technology, Dalarna University, Falun, Sweden.
    Gustafsson, Marcus
    Energy Technology, Dalarna University, Falun, Sweden.
    Myhren, J. A.
    Building Technology, Dalarna University, Falun, Sweden.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Primary energy use in buildings in a Swedish perspective2016In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 130, p. 202-209Article in journal (Refereed)
    Abstract [en]

    The building sector accounts for a large part of the energy use in Europe and is a sector where the energy efficiency needs to improve in order to reach the EU energy and climate goals. The energy efficiency goal is set in terms of primary energy even though there are different opinions on how to calculate primary energy. When determining the primary energy use in a building several assumptions are made regarding allocation and the value of different energy sources. In order to analyze the difference in primary energy when different methods are used, this study use 16 combinations of different assumptions to calculate the primary energy use for three simulated heating and ventilations systems in a building. The system with the lowest primary energy use differs depending on the method used. Comparing a system with district heating and mechanical exhaust ventilation with a system with district heating, mechanical exhaust ventilation and exhaust air heat pump, the former has a 40% higher primary energy use in one scenario while the other has a 320% higher in another scenario. This illustrates the difficulty in determining which system makes the largest contribution to fulfilling the EU energy and climate goals.

  • 5.
    Thygesen, Richard
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Karlsson, Björn
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Economic and energy analysis of three solar assisted heat pump systems in near zero energy buildings2013In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 66, p. 77-87Article in journal (Refereed)
    Abstract [en]

    The European Union's directive of the energy performance of buildings makes energy systems with local energy generation interesting. To support local energy generation the government has appointed a commission to investigate the possibility to implement net metering for grid connected PV-systems. In this paper three different systems are simulated and analyzed with regards to economics and energy: a PV-system and a heat pump (alternative 1), a heat pump and a solar thermal system (alternative 2) and a heat pump, a PV-system and a solar thermal system (alternative 3). System alternative 1 is profitable with daily net metering and monthly net metering and unprofitable with instantaneous net metering. The solar electrical fraction of the system is 21.5%, 43.5% and 50%, respectively. System alternative 2 is unprofitable and has a solar electricity fraction of 5.7%. System alternative 3 is unprofitable and has a solar electricity fraction of just below 50. The conclusion is that a PV system in combination with a heat pump is a superior alternative to a solar thermal system in combination with a heat pump.

  • 6.
    Widén, J.
    et al.
    The Ångström Laboratory, Uppsala, Sweden.
    Lundh, M.
    The Ångström Laboratory, Uppsala, Sweden.
    Vassileva, Iana
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Dahlquist, Erik
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Ellegård, K.
    Linköping University, Sweden.
    Wäckelgård, E.
    The Ångström Laboratory, Uppsala, Sweden.
    Constructing load profiles for household electricity and hot water from time-use data: Modelling approach and validation2009In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 41, no 7, p. 753-768Article in journal (Refereed)
    Abstract [en]

    Time-use data, describing in detail the everyday life of household members as high-resolved activity sequences, have a largely unrealized potential of contributing to domestic energy demand modelling. A model for computation of daily electricity and hot-water demand profiles from time-use data was developed, using simple conversion schemes, mean appliance and water-tap data and general daylight availability distributions. Validation against detailed, end-use specific electricity measurements in a small sample of households reveals that the model for household electricity reproduces hourly load patterns with preservation of important qualitative features. The output from the model, when applied to a large data set of time use in Sweden, also shows correspondence to aggregate profiles for both household electricity and hot water from recent Swedish measurement surveys. Deviations on individual household level are predominantly due to occasionally ill-reported time-use data and on aggregate population level due to slightly non-representative samples. Future uses and developments are identified and it is suggested that modelling energy use from time-use data could be an alternative, or a complement, to energy demand measurements in households.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf