mdh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ghareh Baghi, Arash
    et al.
    Linköping University, Sweden.
    Ask, P.
    Linköping University, Sweden.
    Babic, A.
    Linköping University, Sweden.
    A pattern recognition framework for detecting dynamic changes on cyclic time series2015In: Pattern Recognition, ISSN 0031-3203, E-ISSN 1873-5142, Vol. 48, no 3, p. 696-708Article, review/survey (Refereed)
    Abstract [en]

    This paper proposes a framework for binary classification of the time series with cyclic characteristics. The framework presents an iterative algorithm for learning the cyclic characteristics by introducing the discriminative frequency bands (DFBs) using the discriminant analysis along with k-means clustering method. The DEBs are employed by a hybrid model for learning dynamic characteristics of the time series within the cycles, using statistical and structural machine learning techniques. The framework offers a systematic procedure for finding the optimal design parameters associated with the hybrid model. The proposed model is optimized to detect the changes of the heart sound recordings (HSRs) related to aortic stenosis. Experimental results show that the proposed framework provides efficient tools for the classification of the HSRs based on the heart murmurs. It is also evidenced that the hybrid model, proposed by the framework, substantially improves the classification performance when it comes to detection of the heart disease.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf