mdh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Afsharmazayejani, R.
    et al.
    Shahid Bahonar University of Kerman, Kerman, Iran.
    Yazdanpanah, F.
    Vali-e-Asr University, Rafsanjan, Iran.
    Rezaei, A.
    Northwestern University, Evanston, United States.
    Alaei, M.
    Vali-e-Asr University, Rafsanjan, Iran.
    Daneshtalab, Masoud
    Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
    HoneyWiN: Novel honeycomb-based wireless NoC architecture in many-core era2018In: Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349, Vol. 10824 LNCS, p. 304-316Article in journal (Refereed)
    Abstract [en]

    Although NoC-based systems with many cores are commercially available, their multi-hop nature has become a bottleneck on scaling performance and energy consumption parameters. Alternatively, hybrid wireless NoC provides a postern by exploiting single-hop express links for long-distance communications. Also, there is a common wisdom that grid-like mesh is the most stable topology in conventional designs. That is why almost all of the emerging architectures had been relying on this topology as well. In this paper, first we challenge the efficiency of the grid-like mesh in emerging systems. Then, we propose HoneyWiN, a hybrid reconfigurable wireless NoC architecture that relies on the honeycomb topology. The simulation results show that on average HoneyWiN saves 17% of energy consumption while increases the network throughput by 10% compared to its wireless mesh counterpart. 

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf