https://www.mdu.se/

mdu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fentaye, Amare Desalegn
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kyprianidis, Konstantinos
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Gas turbine prognostics via Temporal Fusion Transformer2024In: Aeronautical Journal, ISSN 0001-9240Article in journal (Refereed)
    Abstract [en]

    Gas turbines play a vital role in various industries. Timely and accurately predicting their degradation is essential for efficient operation and optimal maintenance planning. Diagnostic and prognostic outcomes aid in determining the optimal compressor washing intervals. Diagnostics detects compressor fouling and estimates the trend up to the current time. If the forecast indicates fast progress in the fouling trend, scheduling offline washing during the next inspection event or earlier may be crucial to address the fouling deposit comprehensively. This approach ensures that compressor cleaning is performed based on its actual health status, leading to improved operation and maintenance costs. This paper presents a novel prognostic method for gas turbine degradation forecasting through a time-series analysis. The proposed approach uses the Temporal Fusion Transformer model capable of capturing time-series relationships at different scales. It combines encoder and decoder layers to capture temporal dependencies and temporal-attention layers to capture long-range dependencies across the encoded degradation trends. Temporal attention is a self-attention mechanism that enables the model to consider the importance of each time step degradation in the context of the entire degradation profile of the given health parameter. Performance data from multiple two-spool turbofan engines is employed to train and test the method. The test results show promising forecasting ability of the proposed method multiple flight cycles into the future. By leveraging the insights provided by the method, maintenance events and activities can be scheduled in a proactive manner. Future work is to extend the method to estimate remaining useful life.

  • 2.
    Kyprianidis, Konstantinos
    et al.
    Aristotle University of Thessaloniki, Thessaloniki, Greece.
    Kalfas, Anestis I.
    Aristotle University of Thessaloniki, Thessaloniki, Greece.
    Dynamic performance investigations of a turbojet engine using a cross-application visual oriented platform2008In: Aeronautical Journal, ISSN 0001-9240, Vol. 112, no 1129, p. 161-169Article in journal (Refereed)
    Abstract [en]

    This paper presents the development of visual oriented tools for the dynamic performance simulation of a turbojet engine using a cross-application approach. In particular, the study focuses on the feasibility of developing simulation models using different programming environments and linking them together using a popular spreadsheet program. As a result of this effort, a low fidelity cycle program has been created, capable of being integrated with other performance models. The amount of laboratory sessions required for student training during an educational procedure, for example for a course in gas turbine performance simulation, is greatly reduced due to the familiarity of most students with the spreadsheet software. The model results have been validated using commercially available gas turbine simulation software and experimental data from open literature. The most important finding of this study is the capability of the program to link to aircraft performance models and predict the transient working line of the engine for various initial conditions in order to dynamically simulate flight phases including take-off and landing.

  • 3.
    Xin, Zhao
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Sahoo, Smruti
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kyprianidis, Konstantinos
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Rantzer, Jonatan
    Modelon AB, Lund, Sweden.
    Sielemann, Michael
    Modelon AB, Lund, Sweden.
    Off-design performance analysis of hybridized aircraft gas turbine2019In: Aeronautical Journal, ISSN 0001-9240, Vol. 1231270, p. 1999-2018Article in journal (Refereed)
    Abstract [en]

    An advanced geared turbofan with year 2035 technology level assumptions was established and used for the hybridisation study in this paper. By boosting the low-speed shaft of the turbofan with electrical power through the accessory gearbox, a parallel hybrid concept was set up. Focusing on the off-design performance of the hybridised gas turbine, electrical power input to the shaft, defined as positive hybridisation in this context, generally moves the compressor operation towards surge. On the other hand, the negative hybridisation, which is to reverse the power flow direction can improve the part-load operations of the turbofan and minimise the use of compressor handling bleeds. For the pre-defined mission given in the paper, negative hybridisation of descent, approach and landing, and taxi operations with 580 kW, 240 kW and 650 kW, respectively was found sufficient to keep a minimum compressor surge margin requirement without handling bleed.

    Looking at the hybridisation of key operating points, boosting the cruise operation of the baseline geared turbofan is, however, detrimental to the engine efficiency as it is pushing the cruise operation further away from the energy optimal design point. Without major modifications to the engine design, the benefit of the hybridisation appears primarily at the thermomechanical design point, the hot-day take-off. With the constraint of the turbine blade metal temperature in mind, a 500kW positive hybridisation at hot-day take-off gave cruise specific fuel consumption (SFC) reduction up to 0.5%, mainly because of reduced cooling flow requirement. Through the introduction of typical electrical power system performance characteristics and engine performance exchange rates, a first principles assessment is illustrated. By applying the strategies discussed in the paper, a 3% reduction in block fuel burn can be expected, if a higher power density electrical power system can be achieved.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf