https://www.mdu.se/

mdu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lindmark, Johan
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Lagerkvist, Anders
    Division of Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
    Nilsson, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Carlsson, My
    AnoxKaldnes AB, Lund, Sweden.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Evaluating the effects of electroporation pre-treatment on the biogas yield from ley crop silage.2014In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291, Vol. 174, no 7, p. 2616-2625Article in journal (Refereed)
    Abstract [en]

    Exploiting the full biogas potential of some types of biomass is challenging. The complex structures of lignocellulosic biomass are difficult to break down and thus require longer retention times for the nutrients to become biologically available. It is possible to increase the digestibility of the substrate by pre-treating the material before digestion. This paper explores a pre-treatment of ley crop silage that uses electrical fields, known as electroporation (EP). Different settings of the EP equipment were tested, and the results were analyzed using a batch digestion setup. The results show that it is possible to increase the biogas yield with 16 % by subjecting the substrates to 65 pulses at a field strength of 96 kV/cm corresponding to a total energy input of 259 Wh/kg volatile solid (VS). However, at 100 pulses, a lower field strength of 48 kV/cm and the same total energy input, no effects of the treatment were observed. The energy balance of the EP treatment suggests that the yield, in the form of methane, can be up to double the electrical energy input of the process.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf