The following project has been carried out in collaboration with Abstracta AB (AAB), a company based in Lammhult with specialization in sound landscapes for indoor environments. The company manufactures different types of products with sound-absorbing properties where sustainability and design are in great focus. A new product idea of the company is based on developing an A-classified discreetly designed wall absorber that is considered more as a "wall" than a "wall with mounted absorbent on". The purpose of the project was to develop the following product on a conceptual level.
A main research question with two underlying issues was developed that served as a support during the project.
Question 1: How can an A-rated discreetly designed sound wall absorber be developed?
1.a: How can an A-rated sound wall absorber be developed?
1.b: How can a sound wall absorber achieve a discreetness in its design?
The project followed a product development process where the mainly focus was on concept development and concept testing. The concept was developed based on data collected from a literature study and with the use of a sound absorption calculator. A sound absorption test and an examination form regarding the discrete modeling and design of the absorbent were performed for the final concept that the project resulted in.
The project showed that an A-rated discreetly designed sound wall absorber can be developed through a process where design-critical specifications that affect the absorber's discrete design control how the object can be modeled. Via a sound absorption calculator, concepts can be designed that theoretically indicate an A-rate while the design-critical specifications are not exceeded. Based on the concept, a prototype is manufactured that can undergo a sound absorption test to determine the absorbent's actual sound absorption capacity. Finally, an examination is made to analyze whether the absorbent is considered a discrete alternative or not.
Based on the project's results, the work process proved to be advantageous as the concept indicated a sound absorption capacity that exceeded the requirements of the A-rating and at the same time obtained a discreet design and modeling. This was achieved in connection with the manufacturing materials achieving their technical specifications and a square meter cost lower than expected.
Based on the project's results, the work process proved to be advantageous as the concept indicated a sound absorption capacity that exceeded the requirements of the A-rating and at the same time obtained a discreet design and modeling. This was achieved in connection with the manufacturing materials achieving their technical specifications and a square meter cost lower than expected.
In the further development of the final concept, a solution for how the absorbent is to be mounted on the wall must be developed as this was not focused on in the project based on its boundaries. To achieve a valid A-rate, an additional sound absorption test must also be performed where a larger object area of 10–12 m2 is tested. In future work, the concept's discrete modeling and design should also be examined based on physical treatment to review how the examination form's response results relate to this.