mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computing Burchnall–Chaundy Polynomials with Determinants
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. (MAM)ORCID iD: 0000-0003-3931-7358
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. (MAM)ORCID iD: 0000-0003-4554-6528
2016 (English)In: Engineering Mathematics II: Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization / [ed] Sergei Silvestrov, Milica Rančić, Springer, 2016, 57-63 p.Chapter in book (Refereed)
Abstract [en]

In this expository paper we discuss a way of computing the Burchnall-Chaundy polynomial of two commuting differential operators using a determinant.We describe how the algorithm can be generalized to general Ore extensions, andwhich properties of the algorithm that are preserved.

Place, publisher, year, edition, pages
Springer, 2016. 57-63 p.
Series
Springer Proceedings in Mathematics & Statistics, ISSN 2194-1009, E-ISSN 2194-1009 ; 179
Keyword [en]
Burchnall- Chaundy polynomial; commuting differential operators; Ore extensions
National Category
Mathematics Algebra and Logic
Research subject
Mathematics/Applied Mathematics
Identifiers
URN: urn:nbn:se:mdh:diva-33241DOI: 10.1007/978-3-319-42105-6Scopus ID: 2-s2.0-85012908607ISBN: 978-3-319-42104-9 (print)ISBN: 978-3-319-42105-6 (electronic)OAI: oai:DiVA.org:mdh-33241DiVA: diva2:974172
Available from: 2016-09-25 Created: 2016-09-25 Last updated: 2017-09-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttps://link.springer.com/chapter/10.1007/978-3-319-42105-6_4

Search in DiVA

By author/editor
Richter, JohanSilvestrov, Sergei
By organisation
Educational Sciences and Mathematics
MathematicsAlgebra and Logic

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf